IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i10d10.1007_s10668-021-01950-8.html
   My bibliography  Save this article

Water demand of central pivot-irrigated areas in Bahia, Brazil: management of water resources applied to sustainable production

Author

Listed:
  • Wilian Rodrigues Ribeiro

    (Center of Agricultural Sciences and Engineering of the Federal University of Espírito Santo, Postgraduate in Agronomy, Alto Universitário)

  • Morgana Scaramussa Gonçalves

    (Center of Agricultural Sciences and Engineering of the Federal University of Espírito Santo, Postgraduate in Agronomy, Alto Universitário)

  • Daniel Soares Ferreira

    (Federal University of Viçosa, Av. Peter Henry Rolfs, S/N - University Campus)

  • Dalila Costa Gonçalves

    (Center of Agricultural Sciences and Engineering of the Federal University of Espírito Santo, Postgraduate in Agronomy, Alto Universitário)

  • Samira Luns Hatum Almeida

    (Paulista State University ‘‘Júlio de Mesquita Filho’’/UNESP)

  • Ramon Amaro Sales

    (Federal University of Viçosa, Av. Peter Henry Rolfs, S/N - University Campus)

  • Felipe Cunha Siman

    (Center of Agricultural Sciences and Engineering of the Federal University of Espírito Santo, Postgraduate in Agronomy, Alto Universitário)

  • Luan Peroni Venancio

    (Federal University of Viçosa)

  • Edvaldo Fialho Reis

    (Center of Agricultural Sciences and Engineering of the Federal University of Espírito Santo, Postgraduate in Agronomy, Alto Universitário)

Abstract

When performed without technical criteria, the rapid expansion of irrigated agricultural frontiers can result in overexploitation of water, causing worrying impacts on the balance of agroecosystems. This study proposes a model applied to the state of Bahia, to estimate the water demand of areas irrigated by a central pivot, in order to contribute to information that will subsidize the inspection and planning of water resources in the promotion of sustainable agriculture. The irrigated areas were identified and measured by photointerpretation using orbital images from the Landsat-8 satellite. With a historical series of data, the reference evapotranspiration was calculated and monthly water balance was elaborated. The data obtained were spatialized by kriging, and with punctual values of water deficit (mm), the water demand of the irrigated perimeter of the equipment was estimated. The results were described considering strategic planning units, proposed from municipalities, hydrographic basins and biomes. A total of 4075 pivots were quantified, covering an irrigated area of 265,896.30 ha and with an average annual consumption of 1,333,473,208.02 m3 of water. Areas of high demand were identified, especially in the western region of Bahia, which includes the hydrographic basin of the São Francisco River and the Cerrado biome, concentrating 80.85% and 75.47% of the state water demand for pivots, respectively. Considering possible points of water vulnerability and continuity of this expansion, the results provide the primary information needed to encourage the adoption of public policies aimed at the management of water resources. The study method proposes guidelines that condition the application in any region of interest in the world. Graphical abstract

Suggested Citation

  • Wilian Rodrigues Ribeiro & Morgana Scaramussa Gonçalves & Daniel Soares Ferreira & Dalila Costa Gonçalves & Samira Luns Hatum Almeida & Ramon Amaro Sales & Felipe Cunha Siman & Luan Peroni Venancio & , 2022. "Water demand of central pivot-irrigated areas in Bahia, Brazil: management of water resources applied to sustainable production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(10), pages 12340-12366, October.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:10:d:10.1007_s10668-021-01950-8
    DOI: 10.1007/s10668-021-01950-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01950-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01950-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benjamin Kipkemboi Kogo & Lalit Kumar & Richard Koech, 2021. "Climate change and variability in Kenya: a review of impacts on agriculture and food security," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 23-43, January.
    2. Gibson, Katherine E.B. & Yang, Haishun S. & Franz, Trenton & Eisenhauer, Dean & Gates, John B. & Nasta, Paolo & Farmaha, Bhupinder S. & Grassini, Patricio, 2018. "Assessing explanatory factors for variation in on-farm irrigation in US maize-soybean systems," Agricultural Water Management, Elsevier, vol. 197(C), pages 34-40.
    3. Min Chen & Songhao Shang & Wei Li, 2020. "Integrated Modeling Approach for Sustainable Land-Water-Food Nexus Management," Agriculture, MDPI, vol. 10(4), pages 1-19, April.
    4. Kumar, Navneet & Tischbein, Bernhard & Beg, Mirza Kaleem & Bogardi, Janos J., 2018. "Spatio-temporal analysis of irrigation infrastructure development and long-term changes in irrigated areas in Upper Kharun catchment, Chhattisgarh, India," Agricultural Water Management, Elsevier, vol. 197(C), pages 158-169.
    5. Neissi, Lamya & Albaji, Mohammad & Boroomand Nasab, Saeed, 2020. "Combination of GIS and AHP for site selection of pressurized irrigation systems in the Izeh plain, Iran," Agricultural Water Management, Elsevier, vol. 231(C).
    6. Salih Muhammad Awadh & Heba Al-Mimar & Zaher Mundher Yaseen, 2021. "Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 1-21, January.
    7. Anuksha Boojhawon & Dinesh Surroop, 2021. "Impact of climate change on vulnerability of freshwater resources: a case study of Mauritius," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 195-223, January.
    8. Chenxiao Zhang & Peng Yue & Liping Di & Zhaoyan Wu, 2018. "Automatic Identification of Center Pivot Irrigation Systems from Landsat Images Using Convolutional Neural Networks," Agriculture, MDPI, vol. 8(10), pages 1-19, September.
    9. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Tianxiao & Zhou, Yan, 2020. "Managing agricultural water and land resources with tradeoff between economic, environmental, and social considerations: A multi-objective non-linear optimization model under uncertainty," Agricultural Systems, Elsevier, vol. 178(C).
    10. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    11. Sohail Abbas & Shazia Kousar, 2021. "Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the Upper Indus Basin, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15314-15340, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruchie Pathak & Nicholas R. Magliocca, 2022. "Assessing the Representativeness of Irrigation Adoption Studies: A Meta-Study of Global Research," Agriculture, MDPI, vol. 12(12), pages 1-31, December.
    2. Samuel Asumadu Sarkodie & Maruf Yakubu Ahmed & Phebe Asantewaa Owusu, 2022. "Global adaptation readiness and income mitigate sectoral climate change vulnerabilities," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    3. Daniel Cooley & Steven M. Smith, 2022. "Center Pivot Irrigation Systems as a Form of Drought Risk Mitigation in Humid Regions," NBER Chapters, in: American Agriculture, Water Resources, and Climate Change, pages 135-171, National Bureau of Economic Research, Inc.
    4. Gonçalves, Ivo Zution & Mekonnen, Mesfin M. & Neale, Christopher M.U. & Campos, Isidro & Neale, Michael R., 2020. "Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska," Agricultural Water Management, Elsevier, vol. 228(C).
    5. Hossein Yousefi & Saheb Ghanbari Motlagh & Mohammad Montazeri, 2022. "Multi-Criteria Decision-Making System for Wind Farm Site-Selection Using Geographic Information System (GIS): Case Study of Semnan Province, Iran," Sustainability, MDPI, vol. 14(13), pages 1-27, June.
    6. Bispo, R.C. & Hernandez, F.B.T. & Gonçalves, I.Z. & Neale, C.M.U. & Teixeira, A.H.C., 2022. "Remote sensing based evapotranspiration modeling for sugarcane in Brazil using a hybrid approach," Agricultural Water Management, Elsevier, vol. 271(C).
    7. Jorge A. Garcia & Angelos Alamanos, 2022. "Integrated modelling approaches for sustainable agri-economic growth and environmental improvement: Examples from Canada, Greece, and Ireland," Papers 2208.09087, arXiv.org.
    8. Li, Mo & Fu, Qiang & Singh, Vijay P. & Liu, Dong & Li, Jiang, 2020. "Optimization of sustainable bioenergy production considering energy-food-water-land nexus and livestock manure under uncertainty," Agricultural Systems, Elsevier, vol. 184(C).
    9. Dilshad Ahmad & Malika Kanwal & Muhammad Afzal, 2023. "Climate change effects on riverbank erosion Bait community flood-prone area of Punjab, Pakistan: an application of livelihood vulnerability index," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9387-9415, September.
    10. Yue, Qiong & Guo, Ping, 2021. "Managing agricultural water-energy-food-environment nexus considering water footprint and carbon footprint under uncertainty," Agricultural Water Management, Elsevier, vol. 252(C).
    11. Bakhshandeh, Esmaeil & Jamali, Mohsen & Emadi, Mostafa & Francaviglia, Rosa, 2022. "Greenhouse gas emissions and financial analysis of rice paddy production scenarios in northern Iran," Agricultural Water Management, Elsevier, vol. 272(C).
    12. Salgado, Ramiro & Mateos, Luciano, 2021. "Evaluation of different methods of estimating ET for the performance assessment of irrigation schemes," Agricultural Water Management, Elsevier, vol. 243(C).
    13. Kumar Bahadur Darjee & Prem Raj Neupane & Michael Köhl, 2023. "Proactive Adaptation Responses by Vulnerable Communities to Climate Change Impacts," Sustainability, MDPI, vol. 15(14), pages 1-30, July.
    14. Ren, Hourui & Liu, Bin & Zhang, Zirui & Li, Fuxin & Pan, Ke & Zhou, Zhongli & Xu, Xiaoshuang, 2022. "A water-energy-food-carbon nexus optimization model for sustainable agricultural development in the Yellow River Basin under uncertainty," Applied Energy, Elsevier, vol. 326(C).
    15. Shazia Kousar & Muhammad Afzal & Farhan Ahmed & Štefan Bojnec, 2022. "Environmental Awareness and Air Quality: The Mediating Role of Environmental Protective Behaviors," Sustainability, MDPI, vol. 14(6), pages 1-20, March.
    16. Amit Kumar & Abhilash Singh & Kumar Gaurav, 2023. "Assessing the synergic effect of land use and climate change on the upper Betwa River catchment in Central India under present, past, and future climate scenarios," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5163-5184, June.
    17. Fayezizadeh, Mohammad Reza & Ansari, Naser Alam Zadeh & Albaji, Mohammad & Khaleghi, Esmail, 2021. "Effects of hydroponic systems on yield, water productivity and stomatal gas exchange of greenhouse tomato cultivars," Agricultural Water Management, Elsevier, vol. 258(C).
    18. Haider, Md Alquma & Chaturvedi, Nitin Dutt, 2023. "A mathematical formulation for robust targeting in heat integrated water allocation network," Energy, Elsevier, vol. 264(C).
    19. Juan Carlos Pérez-Mesa & Francisco Javier Pérez-Mesa & Juan José Tapia-León & Diego Luis Valera, 2022. "Scheduling vegetable sales to supermarkets in Europe: The tomato case," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 403-412.
    20. Amit Kumar & Raghvender Pratap Singh & Swatantra Kumar Dubey & Kumar Gaurav, 2022. "Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change," Agriculture, MDPI, vol. 12(12), pages 1-15, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:10:d:10.1007_s10668-021-01950-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.