IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i12p2005-d983695.html
   My bibliography  Save this article

Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change

Author

Listed:
  • Amit Kumar

    (Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India)

  • Raghvender Pratap Singh

    (Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India)

  • Swatantra Kumar Dubey

    (Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea)

  • Kumar Gaurav

    (Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, Madhya Pradesh, India)

Abstract

We estimate the combined effect of climate and landuse-landcover (LU-LC) change on the streamflow of the Betwa River; a semi-arid catchment in Central India. We have used the observed and future bias-corrected climatic datasets from 1980–2100. To assess the LU-LC change in the catchment, we have processed and classified the Landsat satellite images from 1990–2020. We have used Artificial Neural Network (ANN) based Cellular Automata (CA) model to simulate the future LU-LC. Further, we coupled the observed and projected LU-LC and climatic variables in the SWAT (Soil and water assessment tool) model to simulate the streamflow of the Betwa River. In doing so, we have setup this model for the observed (1980–2000 and 2001–2020) and projected (2023–2060 and 2061–2100) time periods by using the LU-LC of the years 1990, 2018, and 2040, 2070, respectively. We observed that the combined effect of climate and LU-LC change resulted in the reduction in the mean monsoon stream flow of the Betwa River by 16% during 2001–2020 as compared to 1982–2000. In all four CMIP6 climatic scenarios (SSP126, SSP245, SSP370, and SSP585), the mean monsoon stream flow is expected to decrease by 39–47% and 31–47% during 2023–2060 and 2061–2100, respectively as compared to the observed time period 1982–2020. Furthermore, average monsoon rainfall in the catchment will decrease by 30–35% during 2023–2060 and 23–30% during 2061–2100 with respect to 1982–2020.

Suggested Citation

  • Amit Kumar & Raghvender Pratap Singh & Swatantra Kumar Dubey & Kumar Gaurav, 2022. "Streamflow of the Betwa River under the Combined Effect of LU-LC and Climate Change," Agriculture, MDPI, vol. 12(12), pages 1-15, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2005-:d:983695
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/12/2005/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/12/2005/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adlul Islam & Alok Sikka & B. Saha & Anamika Singh, 2012. "Streamflow Response to Climate Change in the Brahmani River Basin, India," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1409-1424, April.
    2. Muhammad Hadi Saputra & Han Soo Lee, 2019. "Prediction of Land Use and Land Cover Changes for North Sumatra, Indonesia, Using an Artificial-Neural-Network-Based Cellular Automaton," Sustainability, MDPI, vol. 11(11), pages 1-16, May.
    3. Sridhara Nayak, 2021. "Land use and land cover change and their impact on temperature over central India," Letters in Spatial and Resource Sciences, Springer, vol. 14(2), pages 129-140, August.
    4. R. Pandey & S. Mishra & Ranvir Singh & K. Ramasastri, 2008. "Streamflow Drought Severity Analysis of Betwa River System (India)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(8), pages 1127-1141, August.
    5. Sohail Abbas & Shazia Kousar, 2021. "Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the Upper Indus Basin, Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15314-15340, October.
    6. I. Nalbantis & G. Tsakiris, 2009. "Assessment of Hydrological Drought Revisited," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(5), pages 881-897, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lampros Vasiliades & Athanasios Loukas & Nikos Liberis, 2011. "A Water Balance Derived Drought Index for Pinios River Basin, Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(4), pages 1087-1101, March.
    2. Hossein Tabari & Jaefar Nikbakht & P. Hosseinzadeh Talaee, 2013. "Hydrological Drought Assessment in Northwestern Iran Based on Streamflow Drought Index (SDI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 137-151, January.
    3. Samane Saadat & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2013. "Investigation of spatio-temporal patterns of seasonal streamflow droughts in a semi-arid region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1697-1720, December.
    4. Ali Tabrizi & Davar Khalili & Ali Kamgar-Haghighi & Shahrokh Zand-Parsa, 2010. "Utilization of Time-Based Meteorological Droughts to Investigate Occurrence of Streamflow Droughts," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4287-4306, December.
    5. G. Tsakiris & I. Nalbantis & H. Vangelis & B. Verbeiren & M. Huysmans & B. Tychon & I. Jacquemin & F. Canters & S. Vanderhaegen & G. Engelen & L. Poelmans & P. Becker & O. Batelaan, 2013. "A System-based Paradigm of Drought Analysis for Operational Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5281-5297, December.
    6. Pravat Jena & K. S. Kasiviswanathan & Sarita Azad, 2020. "Spatiotemporal characteristics of extreme droughts and their association with sea surface temperature over the Cauvery River basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2239-2259, December.
    7. Bahram Saghafian & Fatemeh Hamzekhani, 2015. "Hydrological drought early warning based on rainfall threshold," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 815-832, November.
    8. João Santos & Maria Portela & Inmaculada Pulido-Calvo, 2011. "Regional Frequency Analysis of Droughts in Portugal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3537-3558, November.
    9. N. Subash & H. Mohan, 2011. "A Simple Rationally Integrated Drought Indicator for Rice–Wheat Productivity," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(10), pages 2425-2447, August.
    10. Youxin Wang & Tao Peng & Qingxia Lin & Vijay P. Singh & Xiaohua Dong & Chen Chen & Ji Liu & Wenjuan Chang & Gaoxu Wang, 2022. "A New Non-stationary Hydrological Drought Index Encompassing Climate Indices and Modified Reservoir Index as Covariates," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(7), pages 2433-2454, May.
    11. Javad Bazrafshan & Somayeh Hejabi & Jaber Rahimi, 2014. "Drought Monitoring Using the Multivariate Standardized Precipitation Index (MSPI)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(4), pages 1045-1060, March.
    12. Xue-hua Zhao & Xu Chen, 2015. "Auto Regressive and Ensemble Empirical Mode Decomposition Hybrid Model for Annual Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2913-2926, June.
    13. Jie Yang & Yimin Wang & Jun Yao & Jianxia Chang & Guoxin Xu & Xin Wang & Hui Hu, 2020. "Coincidence probability analysis of hydrologic low-flow under the changing environment in the Wei River Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 1711-1726, September.
    14. Dimitrios Myronidis & Konstantinos Ioannou & Dimitrios Fotakis & Gerald Dörflinger, 2018. "Streamflow and Hydrological Drought Trend Analysis and Forecasting in Cyprus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(5), pages 1759-1776, March.
    15. Milad Asadi & Amir Oshnooei-Nooshabadi & Samira-Sadat Saleh & Fattaneh Habibnezhad & Sonia Sarafraz-Asbagh & John Lodewijk Van Genderen, 2022. "Urban Sprawl Simulation Mapping of Urmia (Iran) by Comparison of Cellular Automata–Markov Chain and Artificial Neural Network (ANN) Modeling Approach," Sustainability, MDPI, vol. 14(23), pages 1-16, November.
    16. Željka Brkić & Mladen Kuhta, 2022. "Lake Level Evolution of the Largest Freshwater Lake on the Mediterranean Islands through Drought Analysis and Machine Learning," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    17. Jagadish Padhiary & Kanhu Charan Patra & Sonam Sandeep Dash, 2022. "A Novel Approach to Identify the Characteristics of Drought under Future Climate Change Scenario," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5163-5189, October.
    18. Peng Qi & Y. Jun Xu & Guodong Wang, 2020. "Quantifying the Individual Contributions of Climate Change, Dam Construction, and Land Use/Land Cover Change to Hydrological Drought in a Marshy River," Sustainability, MDPI, vol. 12(9), pages 1-16, May.
    19. Giovana Cristina Santos Medeiros & Adelena Gonçalves Maia & Joana Darc Freire Medeiros, 2019. "Assessment of Two Different Methods in Predicting Hydrological Drought from the Perspective of Water Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1851-1865, March.
    20. da Silva, Antonio Samuel Alves & Stosic, Tatijana & Arsenić, Ilija & Menezes, Rômulo Simões Cezar & Stosic, Borko, 2023. "Multifractal analysis of standardized precipitation index in Northeast Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:12:p:2005-:d:983695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.