IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i7d10.1007_s10668-020-01062-9.html
   My bibliography  Save this article

Coupling and coordination analysis of urbanization, economy and environment of Shandong Province, China

Author

Listed:
  • Yuanfang Wang

    (Weifang University)

  • Qijin Geng

    (Weifang University)

  • Xiaohui Si

    (Yantai City Bureau of Ecology and Environment)

  • Liping Kan

    (Zibo City Bureau of Ecology and Environment)

Abstract

Extensive urbanization and industrialization are taking place in eastern China, resulting in huge challenges on environmental quality. In this case, a coupling and coordination model to analyze the complex relationship between urbanization, economy and environment was developed. The corresponding composite system was built using system dynamics, consisted of urbanization level, urbanization efficiency, social impact, industrial structure, economic level, resource utilization, environmental pollution and environmental protection. Based on the statistics data of each component in temporal sequence (2006–2017) of Shandong province, the inherent relationship of the composite system was explored. The results showed that (1) the key influencing factors of the composite system were environmental pollution level, environmental protection intensity, urbanization extent, industrial structure type, and resource utilization efficiency (in descending order of importance); (2) the coordination degree between economy and urbanization subsystem was the lowest, therefore much more efforts should be made on the coordinated development between urbanization evolution and economic growth; (3) the coupling degree reached a high level for both subsystems and the composite system, in contrast, the coordination degree exhibited an increasing trend from low-level coordination to medium coordination. It is necessary to enhance the coordinated development of urbanization, economy and environment, to achieve sustainable development of ecological civilized society.

Suggested Citation

  • Yuanfang Wang & Qijin Geng & Xiaohui Si & Liping Kan, 2021. "Coupling and coordination analysis of urbanization, economy and environment of Shandong Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(7), pages 10397-10415, July.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-01062-9
    DOI: 10.1007/s10668-020-01062-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01062-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01062-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhaohua Wang & Chen Wang & Jianhua Yin, 2015. "Strategies for addressing climate change on the industrial level: affecting factors to CO 2 emissions of energy-intensive industries in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 303-317, February.
    2. Qian Sun & Xiaohu Zhang & Hanwei Zhang & Haipeng Niu, 2018. "Coordinated development of a coupled social economy and resource environment system: a case study in Henan Province, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1385-1404, June.
    3. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    4. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    5. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    6. Pham Thi Thu Ha & Nomessi Kokutse & Sophie Duchesne & Jean-Pierre Villeneuve & Alain Bélanger & Ha Ngoc Hien & Babacar Toumbou & Duong Ngoc Bach, 2017. "Assessing and selecting interventions for river water quality improvement within the context of population growth and urbanization: a case study of the Cau River basin in Vietnam," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(5), pages 1701-1729, October.
    7. Jiping Yao & Guoqiang Wang & Weina Xue & Zhipeng Yao & Baolin Xue, 2019. "Assessing the Adaptability of Water Resources System in Shandong Province, China, Using a Novel Comprehensive Co-evolution Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 657-675, January.
    8. Han, Tianfang & Zhang, Chuntao & Sun, Yan & Hu, Xiaomin, 2017. "Study on environment-economy-society relationship model of Liaohe River Basin based on multi-agent simulation," Ecological Modelling, Elsevier, vol. 359(C), pages 135-145.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liping Wang & Zhongyi Qu & Wei Yang & Enliang Ren & Tao Tang, 2023. "Coupled Urbanisation and Ecological Protection along the Yellow River Basin in the Context of Dual Carbon," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    2. Ling Cheng & Haiyang Cui & Tian Liang & Dan Huang & Yuanxia Su & Zhiyong Zhang & Chuanhao Wen, 2023. "Study on the Trade-Off Synergy Relationship of “Production-Living-Ecological” Functions in Chinese Counties: A Case Study of Chongqing Municipality," Land, MDPI, vol. 12(5), pages 1-27, May.
    3. Kui Liu & Jian Wang & Xiang Kang & Jingming Liu & Zheyi Xia & Kai Du & Xuexin Zhu, 2022. "Spatio-Temporal Analysis of Population-Land-Economic Urbanization and Its Impact on Urban Carbon Emissions in Shandong Province, China," Land, MDPI, vol. 11(2), pages 1-20, February.
    4. Ji Chai & Zhanqi Wang & Chen Yu, 2021. "Analysis for the Interaction Relationship between Urbanization and Ecological Security: A Case Study in Wuhan City Circle of China," IJERPH, MDPI, vol. 18(24), pages 1-21, December.
    5. Zhenhui Huang & Wei Wei & Ying Han & Shuangying Ding & Ke Tang, 2022. "The Coupling Coordination Evolutionary Analysis of Tourism-Ecological Environment-Public Service for the Yellow River Basin of China," IJERPH, MDPI, vol. 19(15), pages 1-23, July.
    6. Weisong Li & Zhenwei Wang & Zhibin Mao & Jiaxing Cui, 2022. "Spatially Non-Stationary Response of Carbon Emissions to Urbanization in Han River Ecological Economic Belt, China," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    7. Yuqing Geng & Mukasar Maimaituerxun & Han Zhang, 2022. "Coordinated interactions between economy and atmospheric environment: temporal–spatial comparisons from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13887-13916, December.
    8. Jian Tao & Yujie Xie & Haoyuan Zhou & Yuqian Xu & Guangshuai Zhao, 2022. "Cross-County Characteristics of Water–Ecology–Economy Coupling Coordination in the Wuding River Watershed, China," Land, MDPI, vol. 11(12), pages 1-17, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiancheng Qin & Hui Tao & Chinhsien Cheng & Karthikeyan Brindha & Minjin Zhan & Jianli Ding & Guijin Mu, 2020. "Analysis of Factors Influencing Carbon Emissions in the Energy Base, Xinjiang Autonomous Region, China," Sustainability, MDPI, vol. 12(3), pages 1-15, February.
    2. Qi Li & Ya-Ni Wei & Yanfang Dong, 2016. "Coupling analysis of China’s urbanization and carbon emissions: example from Hubei Province," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 1333-1348, March.
    3. Di Zhang & Zhanqi Wang & Shicheng Li & Hongwei Zhang, 2021. "Impact of Land Urbanization on Carbon Emissions in Urban Agglomerations of the Middle Reaches of the Yangtze River," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    4. Han Zhou & Jiejun Huang & Yanbin Yuan, 2017. "Analysis of the Spatial Characteristics of the Water Usage Patterns Based on ESDA-GIS: An Example of Hubei Province, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(5), pages 1503-1516, March.
    5. Wang, Han & Lu, Siying & Lu, Bo & Nie, Xin, 2021. "Overt and covert: The relationship between the transfer of land development rights and carbon emissions," Land Use Policy, Elsevier, vol. 108(C).
    6. Zhang, Dong & Zheng, Yu & Wu, Jianghao & Li, Bingyang & Li, Jinping, 2020. "Annual energy characteristics and thermodynamic evaluation of combined heating, power and biogas system in cold rural area of Northwest China," Energy, Elsevier, vol. 192(C).
    7. Song, Qijiao & Zhou, Nan & Liu, Tianle & Siehr, Stephanie A. & Qi, Ye, 2018. "Investigation of a “coupling model” of coordination between low-carbon development and urbanization in China," Energy Policy, Elsevier, vol. 121(C), pages 346-354.
    8. Wang, Xipan & Song, Junnian & Duan, Haiyan & Wang, Xian'en, 2021. "Coupling between energy efficiency and industrial structure: An urban agglomeration case," Energy, Elsevier, vol. 234(C).
    9. Xu, Bin & Lin, Boqiang, 2016. "A quantile regression analysis of China's provincial CO2 emissions: Where does the difference lie?," Energy Policy, Elsevier, vol. 98(C), pages 328-342.
    10. Wang, Yanan & Li, Xinbei & Kang, Yanqing & Chen, Wei & Zhao, Minjuan & Li, Wei, 2019. "Analyzing the impact of urbanization quality on CO2 emissions: What can geographically weighted regression tell us?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 127-136.
    11. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    12. Hang, Ye & Sun, Jiasen & Wang, Qunwei & Zhao, Zengyao & Wang, Yizhong, 2015. "Measuring energy inefficiency with undesirable outputs and technology heterogeneity in Chinese cities," Economic Modelling, Elsevier, vol. 49(C), pages 46-52.
    13. Apergis, Nicholas & Chang, Tsangyao & Gupta, Rangan & Ziramba, Emmanuel, 2016. "Hydroelectricity consumption and economic growth nexus: Evidence from a panel of ten largest hydroelectricity consumers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 318-325.
    14. Zuoren Sun & Chao An & Huachen Sun, 2018. "Regional Differences in Energy and Environmental Performance: An Empirical Study of 283 Cities in China," Sustainability, MDPI, vol. 10(7), pages 1-28, July.
    15. Ke Wang & Chia-Yen Lee & Jieming Zhang & Yi-Ming Wei, 2018. "Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency," Annals of Operations Research, Springer, vol. 268(1), pages 513-537, September.
    16. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    17. Paola Andrea Alvizuri-Tintaya & Marco Rios-Ruiz & Jaime Lora-Garcia & Juan Ignacio Torregrosa-López & Vanesa G. Lo-Iacono-Ferreira, 2022. "Study and Evaluation of Surface Water Resources Affected by Ancient and Illegal Mining in the Upper Part of the Milluni Micro-Basin, Bolivia," Resources, MDPI, vol. 11(4), pages 1-16, March.
    18. Weidong Chen & Qing He, 2016. "Intersectoral burden sharing of CO 2 mitigation in China in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 1-14, January.
    19. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    20. Shi An & Shaoliang Zhang & Huping Hou & Yiyan Zhang & Haonan Xu & Jie Liang, 2022. "Coupling Coordination Analysis of the Ecology and Economy in the Yellow River Basin under the Background of High-Quality Development," Land, MDPI, vol. 11(8), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:7:d:10.1007_s10668-020-01062-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.