IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v22y2020i4d10.1007_s10668-019-00325-4.html
   My bibliography  Save this article

Food loss in India: water footprint, land footprint and GHG emissions

Author

Listed:
  • Durba Kashyap

    (National Institute of Food Technology Entrepreneurship and Management)

  • Tripti Agarwal

    (National Institute of Food Technology Entrepreneurship and Management)

Abstract

Natural resources are consumed in food production, and food loss is consequently accompanied with a loss of resources as well as greenhouse gas (GHG) emissions. This study analyses food loss based on India-specific production data (for the year 2013) and reported food loss rates during production and post-harvest stages of major food crops and animal products in India. Further, the study evaluates the environmental impacts of food loss in terms of utilization of water, land resources and GHG emissions. The total food loss in harvest and post-harvest stages of the food supply chain for the selected food items amounted to 58.3 ± 2.22 million tonnes (Mt) in the year 2013 with the highest losses by mass in sugarcane and rice. The volume of water associated with the food losses was found to be 115 ± 4.15 billion m3, of which 105 ± 3.77 billion m3 was direct water use (blue + green) and 9.54 ± 0.38 billion m3 was indirect water use (grey). Wasted sugarcane and rice were found to be the largest contributors for water loss. Land footprint and carbon footprint associated with food loss were found to be 9.58 ± 0.4 million hectares (Mha) and 64.1 ± 3.8 Mt CO2eq, respectively, with rice accounting for the largest impact in both. This highlights the immediate need for quantification and taking measures for minimization of losses across the food supply chains in India.

Suggested Citation

  • Durba Kashyap & Tripti Agarwal, 2020. "Food loss in India: water footprint, land footprint and GHG emissions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2905-2918, April.
  • Handle: RePEc:spr:endesu:v:22:y:2020:i:4:d:10.1007_s10668-019-00325-4
    DOI: 10.1007/s10668-019-00325-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-019-00325-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-019-00325-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jonathan A. Foley & Navin Ramankutty & Kate A. Brauman & Emily S. Cassidy & James S. Gerber & Matt Johnston & Nathaniel D. Mueller & Christine O’Connell & Deepak K. Ray & Paul C. West & Christian Balz, 2011. "Solutions for a cultivated planet," Nature, Nature, vol. 478(7369), pages 337-342, October.
    2. Yosuke Munesue & Toshihiko Masui & Takesato Fushima, 2015. "The effects of reducing food losses and food waste on global food insecurity, natural resources, and greenhouse gas emissions," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 43-77, January.
    3. Arnold Tukker & Peter Eder & Sangwon Suh, 2006. "Environmental Impacts of Products:Policy Relevant Information and Data Challenges," Journal of Industrial Ecology, Yale University, vol. 10(3), pages 183-198, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amin Ullah Khan & Yousaf Ali, 2021. "Sustainable supplier selection for the cold supply chain (CSC) in the context of a developing country," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13135-13164, September.
    2. Nicholas Davison & Jaime Borbolla Gaxiola & Divya Gupta & Anurag Garg & Timothy Cockerill & Yuzhou Tang & Xueliang Yuan & Andrew Ross, 2022. "Potential Greenhouse Gas Mitigation for Converting High Moisture Food Waste into Bio-Coal from Hydrothermal Carbonisation in India, Europe and China," Energies, MDPI, vol. 15(4), pages 1-37, February.
    3. Ludmiła Filina-Dawidowicz & Anna Wiktorowska-Jasik, 2022. "Contemporary problems and challenges of sustainable distribution of perishable cargoes: Case study of Polish cold port stores," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4434-4450, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rommel, Jens & Anggraini, Eva, 2018. "Spatially explicit framed field experiments on ecosystem services governance," Ecosystem Services, Elsevier, vol. 34(PB), pages 201-205.
    2. Ascui, Francisco & Ball, Alex & Kahn, Lewis & Rowe, James, 2021. "Is operationalising natural capital risk assessment practicable?," Ecosystem Services, Elsevier, vol. 52(C).
    3. Meike Weltin & Silke Hüttel, 2023. "Sustainable Intensification Farming as an Enabler for Farm Eco-Efficiency?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(1), pages 315-342, January.
    4. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    5. Johnson, Lisa K. & Dunning, Rebecca D. & Gunter, Chris C. & Dara Bloom, J. & Boyette, Michael D. & Creamer, Nancy G., 2018. "Field measurement in vegetable crops indicates need for reevaluation of on-farm food loss estimates in North America," Agricultural Systems, Elsevier, vol. 167(C), pages 136-142.
    6. Ongolo, Symphorien & Giessen, Lukas & Karsenty, Alain & Tchamba, Martin & Krott, Max, 2021. "Forestland policies and politics in Africa: Recent evidence and new challenges," Forest Policy and Economics, Elsevier, vol. 127(C).
    7. Marcela Prokopová & Luca Salvati & Gianluca Egidi & Ondřej Cudlín & Renata Včeláková & Radek Plch & Pavel Cudlín, 2019. "Envisioning Present and Future Land-Use Change under Varying Ecological Regimes and Their Influence on Landscape Stability," Sustainability, MDPI, vol. 11(17), pages 1-24, August.
    8. James J Elser & Timothy J Elser & Stephen R Carpenter & William A Brock, 2014. "Regime Shift in Fertilizer Commodities Indicates More Turbulence Ahead for Food Security," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-7, May.
    9. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    10. Abdulai, Issaka & Hoffmann, Munir P. & Jassogne, Laurence & Asare, Richard & Graefe, Sophie & Tao, Hsiao-Hang & Muilerman, Sander & Vaast, Philippe & Van Asten, Piet & Läderach, Peter & Rötter, Reimun, 2020. "Variations in yield gaps of smallholder cocoa systems and the main determining factors along a climate gradient in Ghana," Agricultural Systems, Elsevier, vol. 181(C).
    11. Qian Sun & Mingjie Wu & Peiyu Du & Wei Qi & Xinyang Yu, 2022. "Spatial Layout Optimization and Simulation of Cultivated Land Based on the Life Community Theory in a Mountainous and Hilly Area of China," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    12. Heider, Katharina & Quaranta, Emanuele & García Avilés, José María & Rodriguez Lopez, Juan Miguel & Balbo, Andrea L. & Scheffran, Jürgen, 2022. "Reinventing the wheel – The preservation and potential of traditional water wheels in the terraced irrigated landscapes of the Ricote Valley, southeast Spain," Agricultural Water Management, Elsevier, vol. 259(C).
    13. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    14. Jeong, Hanseok & Kim, Hakkwan & Jang, Taeil & Park, Seungwoo, 2016. "Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River watershed in Korea using the SWAT model," Agricultural Water Management, Elsevier, vol. 163(C), pages 393-402.
    15. Anna Lungarska & Thierry Brunelle & Raja Chakir & Pierre‐Alain Jayet & Rémi Prudhomme & Stéphane De Cara & Jean‐Christophe Bureau, 2023. "Halving mineral nitrogen use in European agriculture: Insights from multi‐scale land‐use models," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1529-1550, September.
    16. Ethan Gordon & Federico Davila & Chris Riedy, 2022. "Transforming landscapes and mindscapes through regenerative agriculture," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(2), pages 809-826, June.
    17. Yibo Luan & Wenquan Zhu & Xuefeng Cui & Günther Fischer & Terence P. Dawson & Peijun Shi & Zhenke Zhang, 2019. "Cropland yield divergence over Africa and its implication for mitigating food insecurity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 707-734, June.
    18. Aschemann-Witzel, Jessica & de Hooge, Ilona E. & Almli, Valérie L., 2021. "My style, my food, my waste! Consumer food waste-related lifestyle segments," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    19. Peter Scarborough & Paul Appleby & Anja Mizdrak & Adam Briggs & Ruth Travis & Kathryn Bradbury & Timothy Key, 2014. "Dietary greenhouse gas emissions of meat-eaters, fish-eaters, vegetarians and vegans in the UK," Climatic Change, Springer, vol. 125(2), pages 179-192, July.
    20. Muslima Zahan & Alessandro Bonadonna, 2020. "The food insecurity and the young generations? perception: A systematic review," Economia agro-alimentare, FrancoAngeli Editore, vol. 22(3), pages 1-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:22:y:2020:i:4:d:10.1007_s10668-019-00325-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.