IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v69y2025i2d10.1007_s00181-025-02757-6.html
   My bibliography  Save this article

Estimating Income Inequality Using Single-Parameter Lorenz Curves: A New Proposal

Author

Listed:
  • José María Sarabia

    (University of Cantabria)

  • Vanesa Jordá

    (University of Cantabria)

  • Mercedes Tejería

    (University of Cantabria)

Abstract

In a recent paper, Paul and Shankar (2020) introduced a single-parameter Lorenz curve that provides an improved fit compared to many existing uniparametric models. This paper explores new properties of their model, offering a refined representation in terms of convex linear combinations of Lorenz curves. We also derive closed-form expressions for several inequality measures and examine the Lorenz ordering. However, we identify a key limitation: The Gini index for this curve is lower bounded at 0.418, making the model unsuitable for income distributions with lower inequality. To address this issue, we propose an alternative model that extends the range of the Gini index, allowing for greater flexibility in representing income distributions across a wider range of inequality levels. Our results suggest that the Lorenz curve proposed in this paper surpasses the proposal by Paul and Shankar, even in countries with high inequality, where the constraint imposed by the Gini index is not binding.

Suggested Citation

  • José María Sarabia & Vanesa Jordá & Mercedes Tejería, 2025. "Estimating Income Inequality Using Single-Parameter Lorenz Curves: A New Proposal," Empirical Economics, Springer, vol. 69(2), pages 581-597, August.
  • Handle: RePEc:spr:empeco:v:69:y:2025:i:2:d:10.1007_s00181-025-02757-6
    DOI: 10.1007/s00181-025-02757-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-025-02757-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-025-02757-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Ryu, Hang K. & Slottje, Daniel J., 1996. "Two flexible functional form approaches for approximating the Lorenz curve," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 251-274.
    2. Kakwani, N C & Podder, N, 1973. "On the Estimation of Lorenz Curves from Grouped Observations," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 278-292, June.
    3. José‐María Sarabia & Enrique Castillo & Daniel J. Slottje, 2001. "An Exponential Family of Lorenz Curves," Southern Economic Journal, John Wiley & Sons, vol. 67(3), pages 748-756, January.
    4. José María Sarabia & Vanesa Jordá & Carmen Trueba, 2017. "The Lamé class of Lorenz curves," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(11), pages 5311-5326, June.
    5. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    6. José-María Sarabia & Enrique Castillo & Daniel J. Slottje, 2001. "An Exponential Family of Lorenz Curves," Southern Economic Journal, Southern Economic Association, vol. 67(3), pages 748-756, January.
    7. Yitzhaki, Shlomo, 1983. "On an Extension of the Gini Inequality Index," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 24(3), pages 617-628, October.
    8. Dhongde, Shatakshee & Minoiu, Camelia, 2013. "Global Poverty Estimates: A Sensitivity Analysis," World Development, Elsevier, vol. 44(C), pages 1-13.
    9. José-María Sarabia & Enrique Castillo & Daniel J. Slottje, 2001. "An Exponential Family of Lorenz Curves," Southern Economic Journal, John Wiley & Sons, vol. 67(3), pages 748-756, January.
    10. Gholamreza Hajargasht & William E. Griffiths, 2020. "Minimum distance estimation of parametric Lorenz curves based on grouped data," Econometric Reviews, Taylor & Francis Journals, vol. 39(4), pages 344-361, April.
    11. Villasenor, JoseA. & Arnold, Barry C., 1989. "Elliptical Lorenz curves," Journal of Econometrics, Elsevier, vol. 40(2), pages 327-338, February.
    12. Ripsy Bandourian & Robert Turley & James McDonald, 2002. "A Comparison of Parametric Models of Income Distribution across Countries and over Time," LIS Working papers 305, LIS Cross-National Data Center in Luxembourg.
    13. Donaldson, David & Weymark, John A., 1980. "A single-parameter generalization of the Gini indices of inequality," Journal of Economic Theory, Elsevier, vol. 22(1), pages 67-86, February.
    14. Chotikapanich, Duangkamon, 1993. "A comparison of alternative functional forms for the Lorenz curve," Economics Letters, Elsevier, vol. 41(2), pages 129-138.
    15. Vanesa Jorda & José María Sarabia & Markus Jäntti, 2021. "Inequality measurement with grouped data: Parametric and non‐parametric methods," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(3), pages 964-984, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thitithep Sitthiyot & Kanyarat Holasut, 2021. "A simple method for estimating the Lorenz curve," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 8(1), pages 1-9, December.
    2. Miguel Sordo & Jorge Navarro & José Sarabia, 2014. "Distorted Lorenz curves: models and comparisons," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(4), pages 761-780, April.
    3. ZuXiang Wang & Yew-Kwang Ng & Russell Smyth, 2007. "Revisiting The Ordered Family Of Lorenz Curves," Monash Economics Working Papers 19-07, Monash University, Department of Economics.
    4. Sarabia, José María & Gómez-Déniz, Emilio & Sarabia, María & Prieto, Faustino, 2010. "A general method for generating parametric Lorenz and Leimkuhler curves," Journal of Informetrics, Elsevier, vol. 4(4), pages 524-539.
    5. WANG, Zuxiang & SMYTH, Russell & NG, Yew-Kwang, 2009. "A new ordered family of Lorenz curves with an application to measuring income inequality and poverty in rural China," China Economic Review, Elsevier, vol. 20(2), pages 218-235, June.
    6. Melanie Krause, 2014. "Parametric Lorenz Curves and the Modality of the Income Density Function," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 905-929, December.
    7. Khosravi Tanak, A. & Mohtashami Borzadaran, G.R. & Ahmadi, Jafar, 2018. "New functional forms of Lorenz curves by maximizing Tsallis entropy of income share function under the constraint on generalized Gini index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 280-288.
    8. Ogwang, Tomson & Rao, U. L. Gouranga, 2000. "Hybrid models of the Lorenz curve," Economics Letters, Elsevier, vol. 69(1), pages 39-44, October.
    9. Genya Kobayashi & Kazuhiko Kakamu, 2019. "Approximate Bayesian computation for Lorenz curves from grouped data," Computational Statistics, Springer, vol. 34(1), pages 253-279, March.
    10. Sarabia, J. -M. & Castillo, Enrique & Slottje, Daniel J., 1999. "An ordered family of Lorenz curves," Journal of Econometrics, Elsevier, vol. 91(1), pages 43-60, July.
    11. Gholamreza Hajargasht & William E. Griffiths, 2016. "Inference for Lorenz Curves," Department of Economics - Working Papers Series 2022, The University of Melbourne.
    12. Xiaobo Shen & Pingsheng Dai, 2024. "A regression method for estimating Gini index by decile," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 11(1), pages 1-8, December.
    13. Wang, ZuXiang & Smyth, Russell, 2015. "A piecewise method for estimating the Lorenz curve," Economics Letters, Elsevier, vol. 129(C), pages 45-48.
    14. Satya Paul & Sriram Shankar, 2020. "An alternative single parameter functional form for Lorenz curve," Empirical Economics, Springer, vol. 59(3), pages 1393-1402, September.
    15. Michel Lubrano & Zhou Xun, 2023. "The Bayesian approach to poverty measurement," Chapters, in: Jacques Silber (ed.), Research Handbook on Measuring Poverty and Deprivation, chapter 44, pages 475-487, Edward Elgar Publishing.
    16. Sarabia, José María & Prieto, Faustino & Trueba, Carmen & Jordá, Vanesa, 2013. "About the modified Gaussian family of income distributions with applications to individual incomes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1398-1408.
    17. Andrew C. Chang & Phillip Li & Shawn M. Martin, 2018. "Comparing cross‐country estimates of Lorenz curves using a Dirichlet distribution across estimators and datasets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 473-478, April.
    18. Lee, Ji Hyung & Sasaki, Yuya & Toda, Alexis Akira & Wang, Yulong, 2024. "Tuning parameter-free nonparametric density estimation from tabulated summary data," Journal of Econometrics, Elsevier, vol. 238(1).
    19. Edwin Fourrier-Nicolaï & Michel Lubrano, 2021. "Bayesian Inference for Parametric Growth Incidence Curves," Research on Economic Inequality, in: Research on Economic Inequality: Poverty, Inequality and Shocks, volume 29, pages 31-55, Emerald Group Publishing Limited.
    20. Enora Belz, 2019. "Estimating Inequality Measures from Quantile Data," Working Papers halshs-02320110, HAL.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:69:y:2025:i:2:d:10.1007_s00181-025-02757-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.