IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v59y2020i5d10.1007_s00181-019-01736-y.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Hide-and-Seek with time-series filters: a model-based Monte Carlo study

Author

Listed:
  • Vadim Kufenko

    (University of Hohenheim)

Abstract

Time-series filters have become a major tool for univariate and multivariate analysis of business cycles. Yet, the caveats of filtering, such as distortions in spectral density often mentioned in the literature, may have substantial implications for empirical analysis. This paper focuses on two main problems: univariate and multivariate spurious inferences. While detrending the real world data, the true cyclical component is unknown, which makes it problematic to assess the efficiency of time-series filters. Using model-based Monte Carlo simulations solves this issue by introducing four different scenarios with a known trend, cyclical components and shocks. The goal of this exercise is to create realistic long-run macroeconomic time-series. To assess the performance of the five well-established time-series filters, spectral densities of the detrended fluctuations are analyzed and changes in the cross-correlation structure and deviations from the original implied fluctuations are examined. Analysis confirms and complements findings from the existing literature and provides some new insights: (i) presence of the Gibbs–Wilbraham phenomenon (for the Christiano–Fitzgerald and Baxter–King filters), yet no obvious evidence of the Slutzky–Yule phenomenon; (ii) the erroneous choice of filtering bands may lead to spurious inferences about the spectral density peaks of the detrended fluctuations; (iii) preservation of the spectral pattern of the original regular and irregular components after detrending with minor changes in the magnitude of the spectral density peaks; (iv) substantial outlier changes in the cross-correlation structure. The latter distortion may have far-reaching implications for further time-series analysis and may lead to spurious inferences about the interaction between the detrended series.

Suggested Citation

  • Vadim Kufenko, 2020. "Hide-and-Seek with time-series filters: a model-based Monte Carlo study," Empirical Economics, Springer, vol. 59(5), pages 2335-2361, November.
  • Handle: RePEc:spr:empeco:v:59:y:2020:i:5:d:10.1007_s00181-019-01736-y
    DOI: 10.1007/s00181-019-01736-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00181-019-01736-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00181-019-01736-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Charles R & Kang, Heejoon, 1981. "Spurious Periodicity in Inappropriately Detrended Time Series," Econometrica, Econometric Society, vol. 49(3), pages 741-751, May.
    2. José Luis Cendejas & Félix-Fernando Muñoz & Nadia Fernández-de-Pinedo, 2017. "A contribution to the analysis of historical economic fluctuations (1870–2010): filtering, spurious cycles, and unobserved component modeling," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 11(1), pages 93-125, January.
    3. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    4. Rainer Metz, 2010. "Filter-design and model-based analysis of trends and cycles in the presence of outliers and structural breaks," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 4(1), pages 51-73, January.
    5. Kit Baum, 2006. "Time series filtering techniques in Stata," United Kingdom Stata Users' Group Meetings 2006 17, Stata Users Group.
    6. Jutta Bolt & Jan Luiten Zanden, 2014. "The Maddison Project: collaborative research on historical national accounts," Economic History Review, Economic History Society, vol. 67(3), pages 627-651, August.
    7. Lawrence J. Christiano & Terry J. Fitzgerald, 2003. "The Band Pass Filter," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 44(2), pages 435-465, May.
    8. Morten O. Ravn & Harald Uhlig, 2002. "On adjusting the Hodrick-Prescott filter for the frequency of observations," The Review of Economics and Statistics, MIT Press, vol. 84(2), pages 371-375.
    9. Pedersen, Torben Mark, 2001. "The Hodrick-Prescott filter, the Slutzky effect, and the distortionary effect of filters," Journal of Economic Dynamics and Control, Elsevier, vol. 25(8), pages 1081-1101, August.
    10. Claude Diebolt, 2014. "Kuznets versus kondratieff An essay in historical macroeconometrics," Cahiers d’économie politique / Papers in Political Economy, L'Harmattan, issue 67, pages 81-118.
    11. Marianne Baxter & Robert G. King, 1999. "Measuring Business Cycles: Approximate Band-Pass Filters For Economic Time Series," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 575-593, November.
    12. James D. Hamilton, 2018. "Why You Should Never Use the Hodrick-Prescott Filter," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 831-843, December.
    13. Rainer Metz, 2011. "Do Kondratieff waves exist? How time series techniques can help to solve the problem," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 5(3), pages 205-238, October.
    14. Alessandra Iacobucci & Alain Noullez, 2005. "A Frequency Selective Filter for Short-Length Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 25(1), pages 75-102, February.
    15. Harvey, A C & Jaeger, A, 1993. "Detrending, Stylized Facts and the Business Cycle," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(3), pages 231-247, July-Sept.
    16. Arthur F. Burns & Wesley C. Mitchell, 1946. "Measuring Business Cycles," NBER Books, National Bureau of Economic Research, Inc, number burn46-1, May.
    17. Kufenko, Vadmin & Prettner, Klaus, 2017. "You can't always get what you want? A Monte Carlo analysis of the bias and the efficiency of dynamic panel data estimators," ECON WPS - Working Papers in Economic Theory and Policy 07/2017, TU Wien, Institute of Statistics and Mathematical Methods in Economics, Economics Research Unit.
    18. Pollock, D. S. G., 2000. "Trend estimation and de-trending via rational square-wave filters," Journal of Econometrics, Elsevier, vol. 99(2), pages 317-334, December.
    19. Cogley, Timothy & Nason, James M., 1995. "Effects of the Hodrick-Prescott filter on trend and difference stationary time series Implications for business cycle research," Journal of Economic Dynamics and Control, Elsevier, vol. 19(1-2), pages 253-278.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kufenko, Vadim, 2016. "Spurious periodicities in cliometric series: Simultaneous testing," Violette Reihe: Schriftenreihe des Promotionsschwerpunkts "Globalisierung und Beschäftigung" 48/2016, University of Hohenheim, Carl von Ossietzky University Oldenburg, Evangelisches Studienwerk.
    2. José Luis Cendejas & Félix-Fernando Muñoz & Nadia Fernández-de-Pinedo, 2017. "A contribution to the analysis of historical economic fluctuations (1870–2010): filtering, spurious cycles, and unobserved component modeling," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 11(1), pages 93-125, January.
    3. Luca Benati, 2001. "Band-pass filtering, cointegration, and business cycle analysis," Bank of England working papers 142, Bank of England.
    4. Robert J. Hodrick, 2020. "An Exploration of Trend-Cycle Decomposition Methodologies in Simulated Data," NBER Working Papers 26750, National Bureau of Economic Research, Inc.
    5. Phuong Nguyen-Hoang, 2015. "Volatile earmarked revenues and state highway expenditures in the United States," Transportation, Springer, vol. 42(2), pages 237-256, March.
    6. Iolanda Lo Cascio & Stephen Pollock, 2007. "Comparative Economic Cycles," Working Papers 599, Queen Mary University of London, School of Economics and Finance.
    7. Carnazza, Giovanni & Liberati, Paolo & Sacchi, Agnese, 2020. "The cyclically-adjusted primary balance: A novel approach for the euro area," Journal of Policy Modeling, Elsevier, vol. 42(5), pages 1123-1145.
    8. Ard den Reijer, 2006. "The Dutch business cycle: which indicators should we monitor?," DNB Working Papers 100, Netherlands Central Bank, Research Department.
    9. Viv B. Hall & Peter Thomson, 2022. "A boosted HP filter for business cycle analysis:evidence from New Zealand's small open economy," CAMA Working Papers 2022-45, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Melina Dritsaki & Chaido Dritsaki, 2022. "Comparison of HP Filter and the Hamilton’s Regression," Mathematics, MDPI, vol. 10(8), pages 1-18, April.
    11. Michael Funke & Harm Bandholz, 2003. "In search of leading indicators of economic activity in Germany," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(4), pages 277-297.
    12. Mark Meyer & Peter Winker*, 2005. "Using HP Filtered Data for Econometric Analysis: Some Evidence from Monte Carlo Simulations," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 89(3), pages 303-320, August.
    13. Tawadros, George B., 2011. "The stylised facts of Australia's business cycle," Economic Modelling, Elsevier, vol. 28(1), pages 549-556.
    14. Galimberti, Jaqueson K. & Moura, Marcelo L., 2016. "Improving the reliability of real-time output gap estimates using survey forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 358-373.
    15. Klaus Reiner Schenk-Hopp�, "undated". "Economic Growth and Business Cycles: A Critical Comment on Detrending Time Series (Revised Version)," IEW - Working Papers 054, Institute for Empirical Research in Economics - University of Zurich.
    16. Schüler, Yves S. & Hiebert, Paul P. & Peltonen, Tuomas A., 2020. "Financial cycles: Characterisation and real-time measurement," Journal of International Money and Finance, Elsevier, vol. 100(C).
    17. Hall, Viv B & Thomson, Peter, 2022. "A boosted HP filter for business cycle analysis: evidence from New Zealand’s small open economy," Working Paper Series 9473, Victoria University of Wellington, School of Economics and Finance.
    18. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    19. Kaiser, Regina & Maravall, Agustin, 2005. "Combining filter design with model-based filtering (with an application to business-cycle estimation)," International Journal of Forecasting, Elsevier, vol. 21(4), pages 691-710.
    20. Baffigi, Alberto & Bontempi, Maria Elena & Felice, Emanuele & Golinelli, Roberto, 2015. "The changing relationship between inflation and the economic cycle in Italy: 1861–2012," Explorations in Economic History, Elsevier, vol. 56(C), pages 53-70.

    More about this item

    Keywords

    Model-based Monte Carlo simulations; Filtering; Spurious inferences; Spurious dynamic relations;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • C18 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Methodolical Issues: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:59:y:2020:i:5:d:10.1007_s00181-019-01736-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.