IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i5d10.1007_s00180-024-01575-1.html
   My bibliography  Save this article

Multiple-response logistic regression modeling with application to an analysis of cirrhosis liver disease data

Author

Listed:
  • Yang Jing-Nan

    (Northwest Normal University
    Gansu Provincial Research Center for Basic Disciplines of Mathematics and Statistics)

  • Tian Yu-Zhu

    (Northwest Normal University
    Gansu Provincial Research Center for Basic Disciplines of Mathematics and Statistics)

  • Wang Yue

    (The Education University of Hong Kong)

  • Wu Chun-Ho

    (The Hang Seng University of Hong Kong)

Abstract

In practical data analysis, individual measurements usually include two or more responses, and some statistical correlations often exist between the responses. Especially in medical data analysis, observations are often binary responses. A class of multi-response logistic regression model based on a joint modeling approach is investigated in this paper, and an application to a group data of primary biliary cirrhosis diseases is considered. Firstly, we propose a new class of multi-response logistic distribution and investigate its statistical properties. Secondly, a multi-response logistic regression model is constructed using a latent variable model and multi-variate logistic error distribution. Furthermore, the parameter estimation method of the model is provided by applying the monte carlo expectation maximization (MCEM) algorithm and the multiple imputation method. Finally, numerical simulations and comparative predictions on a test set are performed to validate the finite sample performance of the proposed model, and the model is applied to a cirrhosis disease dataset for analysis.

Suggested Citation

  • Yang Jing-Nan & Tian Yu-Zhu & Wang Yue & Wu Chun-Ho, 2025. "Multiple-response logistic regression modeling with application to an analysis of cirrhosis liver disease data," Computational Statistics, Springer, vol. 40(5), pages 2611-2634, June.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:5:d:10.1007_s00180-024-01575-1
    DOI: 10.1007/s00180-024-01575-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01575-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01575-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Le Wang & Matthew L. Williams & Yong Chen & Jinbo Chen, 2020. "Novel two‐phase sampling designs for studying binary outcomes," Biometrics, The International Biometric Society, vol. 76(1), pages 210-223, March.
    2. D. R. Cox, 1972. "The Analysis of Multivariate Binary Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 21(2), pages 113-120, June.
    3. S. Satterthwaite & T. Hutchinson, 1978. "A generalisation of Gumbel's bivariate logistic distribution," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 25(1), pages 163-170, December.
    4. Gul Inan & Ozlem Ilk, 2019. "A marginalized multilevel model for bivariate longitudinal binary data," Statistical Papers, Springer, vol. 60(3), pages 601-628, June.
    5. Ali, Mir M. & Mikhail, N. N. & Haq, M. Safiul, 1978. "A class of bivariate distributions including the bivariate logistic," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 405-412, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Jovanovic, 2011. "Does Monetary Policy Affect Stock Market Uncertainty? – Empirical Evidence from the United States," Ruhr Economic Papers 0240, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    2. repec:zbw:rwirep:0240 is not listed on IDEAS
    3. Jovanović, Mario, 2011. "Does Monetary Policy Affect Stock Market Uncertainty? – Empirical Evidence from the United States," Ruhr Economic Papers 240, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    4. Kromidha, Endrit & Li, Matthew C., 2019. "Determinants of leadership in online social trading: A signaling theory perspective," Journal of Business Research, Elsevier, vol. 97(C), pages 184-197.
    5. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    6. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    7. Richards, Timothy J. & Hamilton, Stephen F. & Yonezawa, Koichi, 2018. "Retail Market Power in a Shopping Basket Model of Supermarket Competition," Journal of Retailing, Elsevier, vol. 94(3), pages 328-342.
    8. Timothy Tyler Brown & Juan Pablo Atal, 2019. "How robust are reference pricing studies on outpatient medical procedures? Three different preprocessing techniques applied to difference‐in differences," Health Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 280-298, February.
    9. L. Sun & M. K. Clayton, 2008. "Bayesian Analysis of Crossclassified Spatial Data with Autocorrelation," Biometrics, The International Biometric Society, vol. 64(1), pages 74-84, March.
    10. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    11. Francesco Bartolucci & Claudia Pigini, 2018. "Partial effects estimation for fixed-effects logit panel data models," Working Papers 431, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    12. M. Vrac & L. Billard & E. Diday & A. Chédin, 2012. "Copula analysis of mixture models," Computational Statistics, Springer, vol. 27(3), pages 427-457, September.
    13. Brajendra C. Sutradhar, 2022. "Fixed versus Mixed Effects Based Marginal Models for Clustered Correlated Binary Data: an Overview on Advances and Challenges," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 259-302, May.
    14. Francesco Bartolucci & Claudia Pigini, 2017. "Granger causality in dynamic binary short panel data models," Working Papers 421, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    15. Battey, H.S. & Cox, D.R., 2022. "Some aspects of non-standard multivariate analysis," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    16. Koichi Hashizume & Jun Tshuchida & Takashi Sozu, 2022. "Flexible use of copula‐type model for dose‐finding in drug combination clinical trials," Biometrics, The International Biometric Society, vol. 78(4), pages 1651-1661, December.
    17. Emmanuel Afuecheta & Saralees Nadarajah & Stephen Chan, 2021. "A Statistical Analysis of Global Economies Using Time Varying Copulas," Computational Economics, Springer;Society for Computational Economics, vol. 58(4), pages 1167-1194, December.
    18. Keon Lee, Seong, 2005. "On generalized multivariate decision tree by using GEE," Computational Statistics & Data Analysis, Elsevier, vol. 49(4), pages 1105-1119, June.
    19. Harald Hruschka, 2022. "Analyzing joint brand purchases by conditional restricted Boltzmann machines," Review of Managerial Science, Springer, vol. 16(4), pages 1117-1145, May.
    20. repec:jss:jstsof:21:i04 is not listed on IDEAS
    21. Xiaohu Li & Yinping You, 2014. "A note on allocation of portfolio shares of random assets with Archimedean copula," Annals of Operations Research, Springer, vol. 212(1), pages 155-167, January.
    22. Dalla Valle Luciana, 2016. "The Use of Official Statistics in Self-Selection Bias Modeling," Journal of Official Statistics, Sciendo, vol. 32(4), pages 887-905, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:5:d:10.1007_s00180-024-01575-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.