IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v27y2012i3p427-457.html
   My bibliography  Save this article

Copula analysis of mixture models

Author

Listed:
  • M. Vrac
  • L. Billard
  • E. Diday
  • A. Chédin

Abstract

Contemporary computers collect databases that can be too large for classical methods to handle. The present work takes data whose observations are distribution functions (rather than the single numerical point value of classical data) and presents a computational statistical approach of a new methodology to group the distributions into classes. The clustering method links the searched partition to the decomposition of mixture densities, through the notions of a function of distributions and of multi-dimensional copulas. The new clustering technique is illustrated by ascertaining distinct temperature and humidity regions for a global climate dataset and shows that the results compare favorably with those obtained from the standard EM algorithm method. Copyright Springer-Verlag 2012

Suggested Citation

  • M. Vrac & L. Billard & E. Diday & A. Chédin, 2012. "Copula analysis of mixture models," Computational Statistics, Springer, vol. 27(3), pages 427-457, September.
  • Handle: RePEc:spr:compst:v:27:y:2012:i:3:p:427-457
    DOI: 10.1007/s00180-011-0266-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-011-0266-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-011-0266-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gildas Brossier, 1990. "Piecewise hierarchical clustering," Journal of Classification, Springer;The Classification Society, vol. 7(2), pages 197-216, September.
    2. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    3. Phipps Arabie & J. Carroll, 1980. "Mapclus: A mathematical programming approach to fitting the adclus model," Psychometrika, Springer;The Psychometric Society, vol. 45(2), pages 211-235, June.
    4. Ali, Mir M. & Mikhail, N. N. & Haq, M. Safiul, 1978. "A class of bivariate distributions including the bivariate logistic," Journal of Multivariate Analysis, Elsevier, vol. 8(3), pages 405-412, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mazo, Gildas, 2016. "A semiparametric and location-shift copula-based mixture model," LIDAM Discussion Papers ISBA 2016026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    2. Francisco de A. T. Carvalho & Antonio Irpino & Rosanna Verde & Antonio Balzanella, 2022. "Batch Self-Organizing Maps for Distributional Data with an Automatic Weighting of Variables and Components," Journal of Classification, Springer;The Classification Society, vol. 39(2), pages 343-375, July.
    3. Sri Winarni & Sapto Wahyu Indratno & Restu Arisanti & Resa Septiani Pontoh, 2024. "Image Feature Extraction Using Symbolic Data of Cumulative Distribution Functions," Mathematics, MDPI, vol. 12(13), pages 1-17, July.
    4. Lee, Sharon X. & McLachlan, Geoffrey J., 2022. "An overview of skew distributions in model-based clustering," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Będowska-Sójka, Barbara & Echaust, Krzysztof, 2020. "What is the best proxy for liquidity in the presence of extreme illiquidity?," Emerging Markets Review, Elsevier, vol. 43(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahsin Baykal, 2025. "Joint frequency analysis of streamflow and sediment amount with copula functions in the Kızlırmak Basin, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(4), pages 4219-4238, March.
    2. F. Marta L. Di Lascio & Andrea Menapace & Roberta Pappadà, 2024. "A spatially‐weighted AMH copula‐based dissimilarity measure for clustering variables: An application to urban thermal efficiency," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    3. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    4. François Bavaud, 2009. "Aggregation invariance in general clustering approaches," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 205-225, December.
    5. Volkovich, Vladimir & Kogan, Jacob & Nicholas, Charles, 2007. "Building initial partitions through sampling techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1097-1105, December.
    6. Yannis Marinakis & Magdalene Marinaki & Michael Doumpos & Nikolaos Matsatsinis & Constantin Zopounidis, 2011. "A hybrid ACO-GRASP algorithm for clustering analysis," Annals of Operations Research, Springer, vol. 188(1), pages 343-358, August.
    7. Rasmus Lentz & Jean Marc Robin & Suphanit Piyapromdee, 2018. "On Worker and Firm Heterogeneity in Wages and Employment Mobility: Evidence from Danish Register Data," 2018 Meeting Papers 469, Society for Economic Dynamics.
    8. Lin, Tsung-I, 2014. "Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 183-195.
    9. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    10. Roberto Mari & Salvatore Ingrassia & Antonio Punzo, 2023. "Local and Overall Deviance R-Squared Measures for Mixtures of Generalized Linear Models," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 233-266, July.
    11. Geert Soete, 1984. "Ultrametric tree representations of incomplete dissimilarity data," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 235-242, December.
    12. J. Hutchinson & Amitabh Mungale, 1997. "Pairwise partitioning: A nonmetric algorithm for identifying feature-based similarity structures," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 85-117, March.
    13. Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    14. Aghiles Salah & Mohamed Nadif, 2019. "Directional co-clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 591-620, September.
    15. Anastasios Bellas & Charles Bouveyron & Marie Cottrell & Jérôme Lacaille, 2013. "Model-based clustering of high-dimensional data streams with online mixture of probabilistic PCA," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(3), pages 281-300, September.
    16. L. A. García‐Escudero & A. Gordaliza & R. San Martín & S. Van Aelst & R. Zamar, 2009. "Robust linear clustering," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 301-318, January.
    17. James Corter & Amos Tversky, 1986. "Extended similarity trees," Psychometrika, Springer;The Psychometric Society, vol. 51(3), pages 429-451, September.
    18. Mukhopadhyay, Subhadeep & Ghosh, Anil K., 2011. "Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2344-2353, July.
    19. Luísa Novais & Susana Faria, 2021. "Comparison of the EM, CEM and SEM algorithms in the estimation of finite mixtures of linear mixed models: a simulation study," Computational Statistics, Springer, vol. 36(4), pages 2507-2533, December.
    20. Naifar, Nader & Hammoudeh, Shawkat & Al dohaiman, Mohamed S., 2016. "Dependence structure between sukuk (Islamic bonds) and stock market conditions: An empirical analysis with Archimedean copulas," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 44(C), pages 148-165.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:27:y:2012:i:3:p:427-457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.