IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v55y2011i7p2344-2353.html

Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis

Author

Listed:
  • Mukhopadhyay, Subhadeep
  • Ghosh, Anil K.

Abstract

In kernel discriminant analysis, it is common practice to select the smoothing parameter (bandwidth) based on the training data and use it for classifying all unlabeled observations. But this method of selecting a single scale of smoothing ignores the major issue of model uncertainty. Moreover, in addition to depending on the training sample, a good choice of bandwidth may also depend on the observation to be classified, and a fixed level of smoothing may not work well in all parts of the measurement space. So, instead of using a single smoothing parameter, it may be more useful in practice to study classification results for multiple scales of smoothing and judiciously aggregate them to arrive at the final decision. This paper adopts a Bayesian approach to carry out one such multiscale analysis using a probabilistic framework. This framework also helps us to extend our multiscale method for semi-supervised classification, where, in addition to the training sample, one uses unlabeled test set observations to form the decision rule. Some well-known benchmark data sets are analyzed to show the utility of these proposed methods.

Suggested Citation

  • Mukhopadhyay, Subhadeep & Ghosh, Anil K., 2011. "Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2344-2353, July.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2344-2353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(11)00046-6
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nema Dean & Thomas Brendan Murphy & Gerard Downey, 2006. "Using unlabelled data to update classification rules with applications in food authenticity studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(1), pages 1-14, January.
    2. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    3. C. C. Holmes & N. M. Adams, 2002. "A probabilistic nearest neighbour method for statistical pattern recognition," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 295-306, May.
    4. Same, Allou & Ambroise, Christophe & Govaert, Gerard, 2006. "A classification EM algorithm for binned data," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 466-480, November.
    5. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B. Karmakar & K. Dhara & K. Dey & A. Basu & A. Ghosh, 2015. "Tests for statistical significance of a treatment effect in the presence of hidden sub-populations," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 97-119, March.
    2. William Cipolli & Timothy Hanson, 2019. "Supervised learning via smoothed Polya trees," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 877-904, December.
    3. Subhajit Dutta & Anil K. Ghosh, 2017. "Discussion," International Statistical Review, International Statistical Institute, vol. 85(1), pages 40-43, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
    2. Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in finite order," CeMMAP working papers 53/16, Institute for Fiscal Studies.
    3. Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
    4. Adrian O’Hagan & Arthur White, 2019. "Improved model-based clustering performance using Bayesian initialization averaging," Computational Statistics, Springer, vol. 34(1), pages 201-231, March.
    5. François Bavaud, 2009. "Aggregation invariance in general clustering approaches," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 205-225, December.
    6. Volkovich, Vladimir & Kogan, Jacob & Nicholas, Charles, 2007. "Building initial partitions through sampling techniques," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1097-1105, December.
    7. Yannis Marinakis & Magdalene Marinaki & Michael Doumpos & Nikolaos Matsatsinis & Constantin Zopounidis, 2011. "A hybrid ACO-GRASP algorithm for clustering analysis," Annals of Operations Research, Springer, vol. 188(1), pages 343-358, August.
    8. Rasmus Lentz & Jean Marc Robin & Suphanit Piyapromdee, 2018. "On Worker and Firm Heterogeneity in Wages and Employment Mobility: Evidence from Danish Register Data," 2018 Meeting Papers 469, Society for Economic Dynamics.
    9. Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
    10. Lebret, Rémi & Iovleff, Serge & Langrognet, Florent & Biernacki, Christophe & Celeux, Gilles & Govaert, Gérard, 2015. "Rmixmod: The R Package of the Model-Based Unsupervised, Supervised, and Semi-Supervised Classification Mixmod Library," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i06).
    11. Lin, Tsung-I, 2014. "Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 183-195.
    12. Jüri Lember & Dario Gasbarra & Alexey Koloydenko & Kristi Kuljus, 2019. "Estimation of Viterbi path in Bayesian hidden Markov models," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 137-169, August.
    13. Faicel Chamroukhi, 2016. "Piecewise Regression Mixture for Simultaneous Functional Data Clustering and Optimal Segmentation," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 374-411, October.
    14. Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
    15. Roberto Mari & Salvatore Ingrassia & Antonio Punzo, 2023. "Local and Overall Deviance R-Squared Measures for Mixtures of Generalized Linear Models," Journal of Classification, Springer;The Classification Society, vol. 40(2), pages 233-266, July.
    16. Bagkavos, Dimitrios & Patil, Prakash N. & Wood, Andrew T.A., 2023. "Nonparametric goodness-of-fit testing for a continuous multivariate parametric model," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    17. Marino, Maria Francesca & Pandolfi, Silvia, 2022. "Hybrid maximum likelihood inference for stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 171(C).
    18. Aghiles Salah & Mohamed Nadif, 2019. "Directional co-clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 591-620, September.
    19. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    20. Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:7:p:2344-2353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.