IDEAS home Printed from https://ideas.repec.org/a/bla/jorssc/v55y2006i1p1-14.html
   My bibliography  Save this article

Using unlabelled data to update classification rules with applications in food authenticity studies

Author

Listed:
  • Nema Dean
  • Thomas Brendan Murphy
  • Gerard Downey

Abstract

Summary. An authentic food is one that is what it purports to be. Food processors and consumers need to be assured that, when they pay for a specific product or ingredient, they are receiving exactly what they pay for. Classification methods are an important tool in food authenticity studies where they are used to assign food samples of unknown type to known types. A classification method is developed where the classification rule is estimated by using both the labelled and the unlabelled data, in contrast with many classical methods which use only the labelled data for estimation. This methodology models the data as arising from a Gaussian mixture model with parsimonious covariance structure, as is done in model‐based clustering. A missing data formulation of the mixture model is used and the models are fitted by using the EM and classification EM algorithms. The methods are applied to the analysis of spectra of food‐stuffs recorded over the visible and near infra‐red wavelength range in food authenticity studies. A comparison of the performance of model‐based discriminant analysis and the method of classification proposed is given. The classification method proposed is shown to yield very good misclassification rates. The correct classification rate was observed to be as much as 15% higher than the correct classification rate for model‐based discriminant analysis.

Suggested Citation

  • Nema Dean & Thomas Brendan Murphy & Gerard Downey, 2006. "Using unlabelled data to update classification rules with applications in food authenticity studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 55(1), pages 1-14, January.
  • Handle: RePEc:bla:jorssc:v:55:y:2006:i:1:p:1-14
    DOI: 10.1111/j.1467-9876.2005.00526.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9876.2005.00526.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9876.2005.00526.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanjeena Subedi & Antonio Punzo & Salvatore Ingrassia & Paul McNicholas, 2013. "Clustering and classification via cluster-weighted factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 7(1), pages 5-40, March.
    2. repec:jss:jstsof:18:i06 is not listed on IDEAS
    3. Shaikh Mateen & McNicholas Paul D & Desmond Anthony F, 2010. "A Pseudo-EM Algorithm for Clustering Incomplete Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-17, March.
    4. Andrea Cappozzo & Francesca Greselin & Thomas Brendan Murphy, 2020. "A robust approach to model-based classification based on trimming and constraints," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 327-354, June.
    5. Paul McNicholas & Ryan Browne & Paula Murray, 2013. "Discussion of ‘Model-based clustering and classification with non-normal mixture distributions’ by Lee and McLachlan," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 22(4), pages 467-472, November.
    6. Cappozzo, Andrea & Greselin, Francesca & Murphy, Thomas Brendan, 2021. "Robust variable selection for model-based learning in presence of adulteration," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    7. Sharon M. McNicholas & Paul D. McNicholas & Daniel A. Ashlock, 2021. "An Evolutionary Algorithm with Crossover and Mutation for Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 264-279, July.
    8. Andrews, Jeffrey L. & McNicholas, Paul D. & Subedi, Sanjeena, 2011. "Model-based classification via mixtures of multivariate t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 520-529, January.
    9. Laura Anderlucci & Francesca Fortunato & Angela Montanari, 2022. "High-Dimensional Clustering via Random Projections," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 191-216, March.
    10. Morris, Katherine & McNicholas, Paul D., 2016. "Clustering, classification, discriminant analysis, and dimension reduction via generalized hyperbolic mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 133-150.
    11. Dariush Najarzadeh & Mojtaba Khazaei & Mojtaba Ganjali, 2015. "Testing for equality of ordered eigenvectors of two multivariate normal populations," METRON, Springer;Sapienza Università di Roma, vol. 73(1), pages 57-72, April.
    12. Yuhong Wei & Paul McNicholas, 2015. "Mixture model averaging for clustering," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(2), pages 197-217, June.
    13. Mukhopadhyay, Subhadeep & Ghosh, Anil K., 2011. "Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2344-2353, July.
    14. Gutiérrez, Luis & Gutiérrez-Peña, Eduardo & Mena, Ramsés H., 2014. "Bayesian nonparametric classification for spectroscopy data," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 56-68.
    15. Vrbik, Irene & McNicholas, Paul D., 2014. "Parsimonious skew mixture models for model-based clustering and classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 196-210.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:55:y:2006:i:1:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.