IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v40y2025i1d10.1007_s00180-024-01495-0.html
   My bibliography  Save this article

R-estimation in linear models: algorithms, complexity, challenges

Author

Listed:
  • Jaromír Antoch

    (Charles University
    Prague University of Economics and Business)

  • Michal Černý

    (Prague University of Economics and Business)

  • Ryozo Miura

    (Tohoku University)

Abstract

The main objective of this paper is to discuss selected computational aspects of robust estimation in the linear model with the emphasis on R-estimators. We focus on numerical algorithms and computational efficiency rather than on statistical properties. In addition, we formulate some algorithmic properties that a “good” method for R-estimators is expected to satisfy and show how to satisfy them using the currently available algorithms. We illustrate both good and bad properties of the existing algorithms. We propose two-stage methods to minimize the effect of the bad properties. Finally we justify a challenge for new approaches based on interior-point methods in optimization.

Suggested Citation

  • Jaromír Antoch & Michal Černý & Ryozo Miura, 2025. "R-estimation in linear models: algorithms, complexity, challenges," Computational Statistics, Springer, vol. 40(1), pages 405-439, January.
  • Handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01495-0
    DOI: 10.1007/s00180-024-01495-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-024-01495-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-024-01495-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Saleh & Jan Picek & Jan Kalina, 2012. "R-estimation of the parameters of a multiple regression model with measurement errors," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(3), pages 311-328, April.
    2. Milan Hladík & Michal Černý & Jaromír Antoch, 2020. "EIV regression with bounded errors in data: total ‘least squares’ with Chebyshev norm," Statistical Papers, Springer, vol. 61(1), pages 279-301, February.
    3. Marc Hallin & Chintan Mehta, 2015. "R -Estimation for Asymmetric Independent Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 218-232, March.
    4. Antoch, Jaromir & Ekblom, Hakan, 1995. "Recursive robust regression computational aspects and comparison," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 115-128, February.
    5. Marc Hallin & Davy Paindaveine & Thomas Verdebout, 2014. "Efficient R-Estimation of Principal and Common Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1071-1083, September.
    6. Hallin, Marc & Swan, Yvik & Verdebout, Thomas & Veredas, David, 2013. "One-step R-estimation in linear models with stable errors," Journal of Econometrics, Elsevier, vol. 172(2), pages 195-204.
    7. Fuchang Gao & Lixing Han, 2012. "Implementing the Nelder-Mead simplex algorithm with adaptive parameters," Computational Optimization and Applications, Springer, vol. 51(1), pages 259-277, January.
    8. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    2. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    3. Riva-Palacio, Alan & Leisen, Fabrizio, 2021. "Compound vectors of subordinators and their associated positive Lévy copulas," Journal of Multivariate Analysis, Elsevier, vol. 183(C).
    4. Vijverberg, Wim P. & Hasebe, Takuya, 2015. "GTL Regression: A Linear Model with Skewed and Thick-Tailed Disturbances," IZA Discussion Papers 8898, Institute of Labor Economics (IZA).
    5. M. Hallin & D. La Vecchia & H. Liu, 2022. "Center-Outward R-Estimation for Semiparametric VARMA Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 925-938, April.
    6. Lanne, Markku & Meitz, Mika & Saikkonen, Pentti, 2017. "Identification and estimation of non-Gaussian structural vector autoregressions," Journal of Econometrics, Elsevier, vol. 196(2), pages 288-304.
    7. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    8. Tsionas, Mike G., 2016. "Bayesian analysis of multivariate stable distributions using one-dimensional projections," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 185-193.
    9. He, Jie-Cao & Hsieh, Chang-Chieh & Huang, Zi-Wei & Lin, Shih-Kuei, 2023. "Valuation of callable range accrual linked to CMS Spread under generalized swap market model," International Review of Financial Analysis, Elsevier, vol. 90(C).
    10. Nolan, John P. & Ojeda-Revah, Diana, 2013. "Linear and nonlinear regression with stable errors," Journal of Econometrics, Elsevier, vol. 172(2), pages 186-194.
    11. Carvajal-Rodríguez, A., 2020. "Multi-model inference of non-random mating from an information theoretic approach," Theoretical Population Biology, Elsevier, vol. 131(C), pages 38-53.
    12. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of an agent-based market-model with a matching engine," Papers 2108.07806, arXiv.org, revised Aug 2021.
    13. Demirel, Duygun Fatih & Basak, Melek, 2019. "A fuzzy bi-level method for modeling age-specific migration," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    14. Davy Paindaveine & Julien Remy & Thomas Verdebout, 2017. "Testing for Principal Component Directions under Weak Identifiability," Working Papers ECARES ECARES 2017-37, ULB -- Universite Libre de Bruxelles.
    15. Vaninsky, Alexander, 2023. "Roadmapping green economic restructuring: A Ricardian gradient approach," Energy Economics, Elsevier, vol. 125(C).
    16. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    17. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    18. Rocha Filho, T.M. & Moret, M.A. & Chow, C.C. & Phillips, J.C. & Cordeiro, A.J.A. & Scorza, F.A. & Almeida, A.-C.G. & Mendes, J.F.F., 2021. "A data-driven model for COVID-19 pandemic – Evolution of the attack rate and prognosis for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    19. Mikosch, Thomas & de Vries, Casper G., 2013. "Heavy tails of OLS," Journal of Econometrics, Elsevier, vol. 172(2), pages 205-221.
    20. Hallin, M. & Werker, B.J.M. & van den Akker, R., 2015. "Optimal Pseudo-Gaussian and Rank-based Tests of the Cointegration Rank in Semiparametric Error-correction Models," Discussion Paper 2015-001, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:40:y:2025:i:1:d:10.1007_s00180-024-01495-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.