IDEAS home Printed from https://ideas.repec.org/a/oup/emjrnl/v25y2022i1p98-113..html
   My bibliography  Save this article

R-estimators in GARCH models: asymptotics and applications

Author

Listed:
  • Hang Liu
  • Kanchan Mukherjee

Abstract

SummaryThe quasi-maximum likelihood estimation is a commonly-used method for estimating the generalized autoregressive conditional heteroscedastic parameters. However, such estimators are sensitive to outliers and their asymptotic normality is proved under the finite fourth moment assumption on the underlying error distribution. In this paper, we propose a novel class of estimators of the generalized autoregressive conditional heteroscedastic parameters based on ranks of the residuals, called R-estimators, with the property that they are asymptotically normal under the existence of a finitemoment of the errors and are highly efficient. We propose a fast algorithm for computing the R-estimators. Both real data analysis and simulations show the superior performance of the proposed estimators under the heavy-tailed and asymmetric distributions.

Suggested Citation

  • Hang Liu & Kanchan Mukherjee, 2022. "R-estimators in GARCH models: asymptotics and applications," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 98-113.
  • Handle: RePEc:oup:emjrnl:v:25:y:2022:i:1:p:98-113.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ectj/utab026
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arie Preminger & Giuseppe Storti, 2017. "Least‐squares estimation of GARCH(1,1) models with heavy‐tailed errors," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 221-258, June.
    2. Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
    3. Mukherjee, Kanchan, 2008. "M-Estimation In Garch Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1530-1553, December.
    4. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    5. Arie Preminger & Giuseppe Storti, 2017. "Least‐squares estimation of GARCH(1,1) models with heavy‐tailed errors," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 221-258, June.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Francq, Christian & Lepage, Guillaume & Zakoïan, Jean-Michel, 2011. "Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE," Journal of Econometrics, Elsevier, vol. 165(2), pages 246-257.
    8. Mukherjee, Kanchan & Bai, Z. D., 2002. "R-estimation in Autoregression with Square-Integrable Score Function," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 167-186, April.
    9. Andrews, Beth, 2012. "Rank-Based Estimation For Garch Processes," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1037-1064, October.
    10. Mukherjee, Kanchan, 2007. "Generalized R-estimators under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 141(2), pages 383-415, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hallin & D. La Vecchia & H. Liu, 2022. "Center-Outward R-Estimation for Semiparametric VARMA Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 925-938, April.
    2. Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
    3. Hallin, Marc & La Vecchia, Davide, 2020. "A Simple R-estimation method for semiparametric duration models," Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
    4. Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016. "Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
    5. Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
    6. Meister, Alexander & Kreiß, Jens-Peter, 2016. "Statistical inference for nonparametric GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3009-3040.
    7. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    8. Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
    9. Christian Francq & Jean-Michel Zakoïan, 2013. "Optimal predictions of powers of conditionally heteroscedastic processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
    10. Preminger, Arie & Storti, Giuseppe, 2014. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," MPRA Paper 59082, University Library of Munich, Germany.
    11. Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.
    12. Huan Gong & Dong Li, 2020. "On the three‐step non‐Gaussian quasi‐maximum likelihood estimation of heavy‐tailed double autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 883-891, November.
    13. Herwartz, Helmut, 2017. "Stock return prediction under GARCH — An empirical assessment," International Journal of Forecasting, Elsevier, vol. 33(3), pages 569-580.
    14. Marc Hallin & Davide La Vecchia, 2014. "Semiparametrically Efficient R-Estimation for Dynamic Location-Scale Models," Working Papers ECARES ECARES 2014-45, ULB -- Universite Libre de Bruxelles.
    15. Conrad, Christian & Mammen, Enno, 2016. "Asymptotics for parametric GARCH-in-Mean models," Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
    16. Gabriele Fiorentini & Enrique Sentana, 2021. "Specification tests for non‐Gaussian maximum likelihood estimators," Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
    17. Christian Gouriéroux & Alain Monfort & Eric Renault, 2017. "Consistent Pseudo-Maximum Likelihood Estimators," Annals of Economics and Statistics, GENES, issue 125-126, pages 187-218.
    18. Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
    19. Zhu, Ke & Li, Wai Keung, 2013. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52344, University Library of Munich, Germany.
    20. C. Gouriéroux & A. Monfort & J.‐M. Zakoïan, 2019. "Consistent Pseudo‐Maximum Likelihood Estimators and Groups of Transformations," Econometrica, Econometric Society, vol. 87(1), pages 327-345, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:25:y:2022:i:1:p:98-113.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.