R-estimators in GARCH models: asymptotics and applications
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Arie Preminger & Giuseppe Storti, 2017. "Least‐squares estimation of GARCH(1,1) models with heavy‐tailed errors," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 221-258, June.
- Jianqing Fan & Lei Qi & Dacheng Xiu, 2014. "Quasi-Maximum Likelihood Estimation of GARCH Models With Heavy-Tailed Likelihoods," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 178-191, April.
- Mukherjee, Kanchan, 2008. "M-Estimation In Garch Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1530-1553, December.
- Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
- Arie Preminger & Giuseppe Storti, 2017.
"Least‐squares estimation of GARCH(1,1) models with heavy‐tailed errors,"
Econometrics Journal, Royal Economic Society, vol. 20(2), pages 221-258, June.
- Arie Preminger & Giuseppe Storti, 2017. "Least‐squares estimation of GARCH(1,1) models with heavy‐tailed errors," Econometrics Journal, Royal Economic Society, vol. 20(2), pages 221-258.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Francq, Christian & Lepage, Guillaume & Zakoïan, Jean-Michel, 2011. "Two-stage non Gaussian QML estimation of GARCH models and testing the efficiency of the Gaussian QMLE," Journal of Econometrics, Elsevier, vol. 165(2), pages 246-257.
- Mukherjee, Kanchan & Bai, Z. D., 2002. "R-estimation in Autoregression with Square-Integrable Score Function," Journal of Multivariate Analysis, Elsevier, vol. 81(1), pages 167-186, April.
- Andrews, Beth, 2012. "Rank-Based Estimation For Garch Processes," Econometric Theory, Cambridge University Press, vol. 28(5), pages 1037-1064, October.
- Mukherjee, Kanchan, 2007. "Generalized R-estimators under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 141(2), pages 383-415, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- M. Hallin & D. La Vecchia & H. Liu, 2022.
"Center-Outward R-Estimation for Semiparametric VARMA Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 925-938, April.
- Marc Hallin & Davide La Vecchia & H Liu, 2019. "Center-Outward R-Estimation for Semiparametric VARMA Models," Working Papers ECARES 2019-25, ULB -- Universite Libre de Bruxelles.
- Hallin, Marc & La Vecchia, Davide, 2017. "R-estimation in semiparametric dynamic location-scale models," Journal of Econometrics, Elsevier, vol. 196(2), pages 233-247.
- Hallin, Marc & La Vecchia, Davide, 2020.
"A Simple R-estimation method for semiparametric duration models,"
Journal of Econometrics, Elsevier, vol. 218(2), pages 736-749.
- Marc Hallin & Davide La Vecchia, 2017. "A Simple R-Estimation Method for Semiparametric Duration Models," Working Papers ECARES ECARES 2017-01, ULB -- Universite Libre de Bruxelles.
- Mohamed El Ghourabi & Christian Francq & Fedya Telmoudi, 2016.
"Consistent Estimation of the Value at Risk When the Error Distribution of the Volatility Model is Misspecified,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 46-76, January.
- El Ghourabi, Mohamed & Francq, Christian & Telmoudi, Fedya, 2013. "Consistent estimation of the Value-at-Risk when the error distribution of the volatility model is misspecified," MPRA Paper 51150, University Library of Munich, Germany.
- Yining Chen, 2015. "Semiparametric Time Series Models with Log-concave Innovations: Maximum Likelihood Estimation and its Consistency," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(1), pages 1-31, March.
- Meister, Alexander & Kreiß, Jens-Peter, 2016. "Statistical inference for nonparametric GARCH models," Stochastic Processes and their Applications, Elsevier, vol. 126(10), pages 3009-3040.
- Francq, Christian & Zakoïan, Jean-Michel, 2015.
"Risk-parameter estimation in volatility models,"
Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
- Francq, Christian & Zakoian, Jean-Michel, 2012. "Risk-parameter estimation in volatility models," MPRA Paper 41713, University Library of Munich, Germany.
- Aknouche, Abdelhakim & Al-Eid, Eid & Demouche, Nacer, 2016. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," MPRA Paper 75770, University Library of Munich, Germany, revised 19 Dec 2016.
- Christian Francq & Jean-Michel Zakoïan, 2013.
"Optimal predictions of powers of conditionally heteroscedastic processes,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(2), pages 345-367, March.
- Francq, Christian & Zakoian, Jean-Michel, 2010. "Optimal predictions of powers of conditionally heteroskedastic processes," MPRA Paper 22155, University Library of Munich, Germany.
- Christan Francq & Jean-Michel Zakoian, 2012. "Optimal Predictions of Powers of Conditionally Heteroskedastic Processes," Working Papers 2012-17, Center for Research in Economics and Statistics.
- Preminger, Arie & Storti, Giuseppe, 2014.
"Least squares estimation for GARCH (1,1) model with heavy tailed errors,"
MPRA Paper
59082, University Library of Munich, Germany.
- PREMINGER Arie & STORTI Giuseppe, 2017. "Least squares estimation for GARCH (1,1) model with heavy tailed errors," LIDAM Discussion Papers CORE 2017015, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Abdelhakim Aknouche & Eid Al-Eid & Nacer Demouche, 2018. "Generalized quasi-maximum likelihood inference for periodic conditionally heteroskedastic models," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 485-511, October.
- Huan Gong & Dong Li, 2020. "On the three‐step non‐Gaussian quasi‐maximum likelihood estimation of heavy‐tailed double autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 883-891, November.
- Herwartz, Helmut, 2017. "Stock return prediction under GARCH — An empirical assessment," International Journal of Forecasting, Elsevier, vol. 33(3), pages 569-580.
- Marc Hallin & Davide La Vecchia, 2014. "Semiparametrically Efficient R-Estimation for Dynamic Location-Scale Models," Working Papers ECARES ECARES 2014-45, ULB -- Universite Libre de Bruxelles.
- Conrad, Christian & Mammen, Enno, 2016.
"Asymptotics for parametric GARCH-in-Mean models,"
Journal of Econometrics, Elsevier, vol. 194(2), pages 319-329.
- Conrad, Christian & Mammen , Enno, 2015. "Asymptotics for parametric GARCH-in-Mean Models," Working Papers 0579, University of Heidelberg, Department of Economics.
- Gabriele Fiorentini & Enrique Sentana, 2021.
"Specification tests for non‐Gaussian maximum likelihood estimators,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 683-742, July.
- Gabriele Fiorentini & Enrique Sentana, 2018. "Specification tests for non-Gaussian maximum likelihood estimators," Working Paper series 18-22, Rimini Centre for Economic Analysis.
- Gabriele Fiorentini & Enrique Sentana, 2018. "Specification tests for non-Gaussian maximum likelihood estimators," Econometrics Working Papers Archive 2018_05, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
- Sentana, Enrique & Fiorentini, Gabriele, 2018. "Specification tests for non-Gaussian maximum likelihood estimators," CEPR Discussion Papers 12934, C.E.P.R. Discussion Papers.
- Gabriele Fiorentini & Enrique Sentana, 2018. "Specification Tests for Non-Gaussian Maximum Likelihood Estimators," Working Papers wp2018_1804, CEMFI.
- Christian Gouriéroux & Alain Monfort & Eric Renault, 2017.
"Consistent Pseudo-Maximum Likelihood Estimators,"
Annals of Economics and Statistics, GENES, issue 125-126, pages 187-218.
- Christian Gouriéroux & Alain Monfort & Eric Renault, 2016. "Consistent Pseudo-Maximum Likelihood Estimators," Working Papers 2016-33, Center for Research in Economics and Statistics.
- Christian Gouriéroux & Alain Monfort & Eric Renault, 2017. "Consistent Pseudo-Maximum Likelihood Estimators," Working Papers 2017-10, Center for Research in Economics and Statistics.
- Mo Zhou & Liang Peng & Rongmao Zhang, 2021. "Empirical likelihood test for the application of swqmele in fitting an arma‐garch model," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(2), pages 222-239, March.
- Zhu, Ke & Li, Wai Keung, 2013.
"A new Pearson-type QMLE for conditionally heteroskedastic models,"
MPRA Paper
52344, University Library of Munich, Germany.
- Zhu, Ke & Li, Wai Keung, 2014. "A new Pearson-type QMLE for conditionally heteroskedastic models," MPRA Paper 52732, University Library of Munich, Germany.
- C. Gouriéroux & A. Monfort & J.‐M. Zakoïan, 2019.
"Consistent Pseudo‐Maximum Likelihood Estimators and Groups of Transformations,"
Econometrica, Econometric Society, vol. 87(1), pages 327-345, January.
- Gouriéroux, Christian & Monfort, Alain & Zakoian, Jean-Michel, 2018. "Consistent Pseudo-Maximum Likelihood Estimators and Groups of Transformations," MPRA Paper 87834, University Library of Munich, Germany.
- Christian Gouriéroux & Alain Monfort & Jean-Michel Zakoian, 2018. "Consistent Pseudo-Maximum Likelihood Estimators and Groups of Transformations," Working Papers 2018-08, Center for Research in Economics and Statistics.
More about this item
Keywords
R-estimation; empirical process; GARCH models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:emjrnl:v:25:y:2022:i:1:p:98-113.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/resssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.