IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v39y2024i3d10.1007_s00180-023-01335-7.html
   My bibliography  Save this article

Threshold effect in varying coefficient models with unknown heteroskedasticity

Author

Listed:
  • Yuanqing Zhang

    (Shanghai University of International Business and Economics)

  • Chunrong Ai

    (The Chinese University of Hong Kong)

  • Yaqin Feng

    (Ohio University)

Abstract

This paper extends the threshold regression to threshold effect in varying coefficient model. We allow for either cross-section or time series observations. Estimation of the regression parameters is considered. An asymptotic distribution theory for the regression estimates (the threshold and the regression slopes) is developed. The distribution of threshold estimates is found to be non-standard. Under some sufficient conditions, we show that the proposed estimator for regression slopes is root-n consistent and asymptotically normally distributed, and that the proposed estimator for the varying coefficient is consistent and also asymptotically normal distributed but at a rate slower than root-n. Consistent estimators for the asymptotic variances of the proposed estimators are provided. Monte Carlo simulations are presented to assess the performance of the asymptotic approximations. The empirical relevance of the theory is illustrated through an application to the relationship between environmental regulation and regional technological innovation study.

Suggested Citation

  • Yuanqing Zhang & Chunrong Ai & Yaqin Feng, 2024. "Threshold effect in varying coefficient models with unknown heteroskedasticity," Computational Statistics, Springer, vol. 39(3), pages 1165-1181, May.
  • Handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01335-7
    DOI: 10.1007/s00180-023-01335-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-023-01335-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-023-01335-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Ping, 2012. "Likelihood estimation and inference in threshold regression," Journal of Econometrics, Elsevier, vol. 167(1), pages 274-294.
    2. Seo, Myung Hwan & Linton, Oliver, 2007. "A smoothed least squares estimator for threshold regression models," Journal of Econometrics, Elsevier, vol. 141(2), pages 704-735, December.
    3. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    4. Hidalgo, Javier & Lee, Jungyoon & Seo, Myung Hwan, 2019. "Robust inference for threshold regression models," Journal of Econometrics, Elsevier, vol. 210(2), pages 291-309.
    5. Caner, Mehmet & Hansen, Bruce E., 2004. "Instrumental Variable Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 20(5), pages 813-843, October.
    6. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    7. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    8. Kapetanios, George, 2010. "Testing For Exogeneity In Threshold Models," Econometric Theory, Cambridge University Press, vol. 26(1), pages 231-259, February.
    9. Chiou, Yan-Yu & Chen, Mei-Yuan & Chen, Jau-er, 2018. "Nonparametric regression with multiple thresholds: Estimation and inference," Journal of Econometrics, Elsevier, vol. 206(2), pages 472-514.
    10. Caner, Mehmet, 2002. "A Note On Least Absolute Deviation Estimation Of A Threshold Model," Econometric Theory, Cambridge University Press, vol. 18(3), pages 800-814, June.
    11. Bruce Hansen, 1999. "Testing for Linearity," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 551-576, December.
    12. Liu, Xiaodong & Lee, Lung-fei & Bollinger, Christopher R., 2010. "An efficient GMM estimator of spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 159(2), pages 303-319, December.
    13. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    14. Hansen,B.E., 1999. "Testing for linearity," Working papers 7, Wisconsin Madison - Social Systems.
    15. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
    16. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    17. Yan-Yu Chiou & Mei-Yuan Chen & Jau-er Chen, 2017. "Nonparametric Regression with Multiple Thresholds: Estimation and Inference," Papers 1705.09418, arXiv.org, revised Feb 2018.
    18. Lin, Xu & Lee, Lung-fei, 2010. "GMM estimation of spatial autoregressive models with unknown heteroskedasticity," Journal of Econometrics, Elsevier, vol. 157(1), pages 34-52, July.
    19. Porter, Jack & Yu, Ping, 2015. "Regression discontinuity designs with unknown discontinuity points: Testing and estimation," Journal of Econometrics, Elsevier, vol. 189(1), pages 132-147.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Ping & Phillips, Peter C.B., 2018. "Threshold regression with endogeneity," Journal of Econometrics, Elsevier, vol. 203(1), pages 50-68.
    2. Lee, Yoonseok & Wang, Yulong, 2023. "Threshold regression with nonparametric sample splitting," Journal of Econometrics, Elsevier, vol. 235(2), pages 816-842.
    3. Li, Dong & Tong, Howell, 2016. "Nested sub-sample search algorithm for estimation of threshold models," LSE Research Online Documents on Economics 68880, London School of Economics and Political Science, LSE Library.
    4. Pitarakis Jean-Yves, 2006. "Model Selection Uncertainty and Detection of Threshold Effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
    5. Kourtellos, Andros & Stengos, Thanasis & Sun, Yiguo, 2022. "Endogeneity In Semiparametric Threshold Regression," Econometric Theory, Cambridge University Press, vol. 38(3), pages 562-595, June.
    6. repec:cep:stiecm:/2014/577 is not listed on IDEAS
    7. Rothfelder, Mario & Boldea, Otilia, 2016. "Testing for a Threshold in Models with Endogenous Regressors," Other publications TiSEM 40ca581a-e228-49ae-911f-e, Tilburg University, School of Economics and Management.
    8. Seo, Myung Hwan & Shin, Yongcheol, 2016. "Dynamic panels with threshold effect and endogeneity," Journal of Econometrics, Elsevier, vol. 195(2), pages 169-186.
    9. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2010. "Regime specific predictability in predictive regressions," Discussion Paper Series In Economics And Econometrics 0916, Economics Division, School of Social Sciences, University of Southampton.
    10. repec:wyi:journl:002203 is not listed on IDEAS
    11. Pitarakis, J., 2004. "Model selection uncertainty and detection of threshold effects," Discussion Paper Series In Economics And Econometrics 0409, Economics Division, School of Social Sciences, University of Southampton.
    12. Christopoulos, Dimitris & McAdam, Peter & Tzavalis, Elias, 2018. "Dealing with endogeneity in threshold models using copulas: an illustration to the foreign trade multiplier," Working Paper Series 2136, European Central Bank.
    13. Somlanare Romuald Kinda & Relwendé Sawadogo, 2023. "Does financial development really spur industrialization in sub‐Saharan African countries?," African Development Review, African Development Bank, vol. 35(4), pages 390-402, December.
    14. Peter Martey Addo, 2014. "Multivariate Self-Exciting Threshold Autoregressive Models with eXogenous Input," Papers 1407.7738, arXiv.org.
    15. Ana Beatriz Galvao & Massimiliano Marcellino, 2010. "Endogenous Monetary Policy Regimes and the Great Moderation," Economics Working Papers ECO2010/22, European University Institute.
    16. Jesús Gonzalo & Jean-Yves Pitarakis, 2011. "Regime-Specific Predictability in Predictive Regressions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 229-241, June.
    17. Yoonseok Lee & Yulong Wang, 2020. "Inference in Threshold Models," Center for Policy Research Working Papers 223, Center for Policy Research, Maxwell School, Syracuse University.
    18. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    19. Dreger, Christian & Gerdesmeier, Dieter & Roffia, Barbara, 2020. "The impact of credit for house price overvaluations in the euro area: Evidence from threshold models," MPRA Paper 99523, University Library of Munich, Germany.
    20. Jesús Gonzalo & Jean-Yves Pitarakis, 2013. "Estimation and inference in threshold type regime switching models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 8, pages 189-205, Edward Elgar Publishing.
    21. Yu, Ping, 2015. "Adaptive estimation of the threshold point in threshold regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 83-100.
    22. repec:hum:wpaper:sfb649dp2013-034 is not listed on IDEAS
    23. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:3:d:10.1007_s00180-023-01335-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.