IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Regime-Specific Predictability in Predictive Regressions

  • Jes�s Gonzalo
  • Jean-Yves Pitarakis

Predictive regressions are linear specifications linking a noisy variable such as stock returns to past values of a very persistent regressor with the aim of assessing the presence of predictability. Key complications that arise are the potential presence of endogeneity and the poor adequacy of asymptotic approximations. In this article, we develop tests for uncovering the presence of predictability in such models when the strength or direction of predictability may alternate across different economically meaningful episodes. An empirical application reconsiders the dividend yield-based return predictability and documents a strong predictability that is countercyclical, occurring solely during bad economic times. This article has online supplementary materials.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/10.1080/07350015.2011.652053
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Journal of Business & Economic Statistics.

Volume (Year): 30 (2011)
Issue (Month): 2 (June)
Pages: 229-241

as
in new window

Handle: RePEc:taf:jnlbes:v:30:y:2011:i:2:p:229-241
Contact details of provider: Web page: http://www.tandfonline.com/UBES20

Order Information: Web: http://www.tandfonline.com/pricing/journal/UBES20

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Peter C.B. Phillips & Joon Y. Park, 1986. "Statistical Inference in Regressions with Integrated Processes: Part 1," Cowles Foundation Discussion Papers 811R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1987.
  2. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
  3. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
  4. Martin Lettau & Stijn Van Nieuwerburgh, 2006. "Reconciling the Return Predictability Evidence," 2006 Meeting Papers 29, Society for Economic Dynamics.
  5. Hansen, B.E., 1991. "Inference when a Nuisance Parameter is Not Identified Under the Null Hypothesis," RCER Working Papers 296, University of Rochester - Center for Economic Research (RCER).
  6. Barbara Rossi, 2005. "Are Exchange Rates Really Random Walks? Some Evidence Robust to Parameter Instability," Data 0503001, EconWPA.
  7. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(05), pages 1131-1147, October.
  8. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
  9. Graham Elliott, 1998. "On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots," Econometrica, Econometric Society, vol. 66(1), pages 149-158, January.
  10. Rossi, Barbara, 2005. "Optimal Tests For Nested Model Selection With Underlying Parameter Instability," Econometric Theory, Cambridge University Press, vol. 21(05), pages 962-990, October.
  11. Gonzalo, Jesus & Wolf, Michael, 2005. "Subsampling inference in threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 127(2), pages 201-224, August.
  12. Michael Jansson & Marcelo J. Moreira, 2004. "Optimal Inference in Regression Models with Nearly Integrated Regressors," NBER Technical Working Papers 0303, National Bureau of Economic Research, Inc.
  13. Phillips, Peter C B & Hansen, Bruce E, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, Wiley Blackwell, vol. 57(1), pages 99-125, January.
  14. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
  15. Saikkonen, Pentti, 1991. "Asymptotically Efficient Estimation of Cointegration Regressions," Econometric Theory, Cambridge University Press, vol. 7(01), pages 1-21, March.
  16. Andrew Ang & Geert Bekaert, 2001. "Stock Return Predictability: Is it There?," NBER Working Papers 8207, National Bureau of Economic Research, Inc.
  17. Campbell, John & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Scholarly Articles 3122601, Harvard University Department of Economics.
  18. Saikkonen, Pentti, 1992. "Estimation and Testing of Cointegrated Systems by an Autoregressive Approximation," Econometric Theory, Cambridge University Press, vol. 8(01), pages 1-27, March.
  19. Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
  20. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
  21. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
  22. Park, Joon Y. & Hahn, Sang B., 1999. "Cointegrating Regressions With Time Varying Coefficients," Econometric Theory, Cambridge University Press, vol. 15(05), pages 664-703, October.
  23. Hansen,B.E., 1999. "Testing for linearity," Working papers 7, Wisconsin Madison - Social Systems.
  24. Estrella, Arturo, 2003. "Critical Values And P Values Of Bessel Process Distributions: Computation And Application To Structural Break Tests," Econometric Theory, Cambridge University Press, vol. 19(06), pages 1128-1143, December.
  25. Donald W.K. Andrews, 1990. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Cowles Foundation Discussion Papers 943, Cowles Foundation for Research in Economics, Yale University.
  26. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
  27. Phillips, Peter C B, 1988. "Regression Theory for Near-Integrated Time Series," Econometrica, Econometric Society, vol. 56(5), pages 1021-43, September.
  28. Timmermann, Allan, 2008. "Elusive return predictability," International Journal of Forecasting, Elsevier, vol. 24(1), pages 1-18.
  29. Lior Menzly & Tano Santos & Pietro Veronesi, 2004. "Understanding Predictability," Journal of Political Economy, University of Chicago Press, vol. 112(1), pages 1-47, February.
  30. David E. Rapach & Mark E. Wohar, 2006. "Structural Breaks and Predictive Regression Models of Aggregate U.S. Stock Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(2), pages 238-274.
  31. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
  32. Bandi, Federico M. & Perron, Benoît, 2008. "Long-run risk-return trade-offs," Journal of Econometrics, Elsevier, vol. 143(2), pages 349-374, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2011:i:2:p:229-241. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.