IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v36y2021i3d10.1007_s00180-021-01070-x.html
   My bibliography  Save this article

A hierarchical Bayes approach to adjust for selection bias in before–after analyses of vision zero policies

Author

Listed:
  • Jonathan Auerbach

    (Columbia University)

  • Christopher Eshleman

    (The Port Authority of New York & New Jersey)

  • Rob Trangucci

    (University of Michigan)

Abstract

American cities devote significant resources to the implementation of traffic safety countermeasures that prevent pedestrian fatalities. However, the before–after comparisons typically used to evaluate the success of these countermeasures often suffer from selection bias. This paper motivates the tendency for selection bias to overestimate the benefits of traffic safety policy, using New York City’s Vision Zero strategy as an example. The NASS General Estimates System, Fatality Analysis Reporting System and other databases are combined into a Bayesian hierarchical model to calculate a more realistic before–after comparison. The results confirm the before–after analysis of New York City’s Vision Zero policy did in fact overestimate the effect of the policy, and a more realistic estimate is roughly two-thirds the size.

Suggested Citation

  • Jonathan Auerbach & Christopher Eshleman & Rob Trangucci, 2021. "A hierarchical Bayes approach to adjust for selection bias in before–after analyses of vision zero policies," Computational Statistics, Springer, vol. 36(3), pages 1577-1604, September.
  • Handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01070-x
    DOI: 10.1007/s00180-021-01070-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01070-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01070-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roya Amjadi & Wendy Martinez, 2021. "The 2016 Data Challenge of the American Statistical Association," Computational Statistics, Springer, vol. 36(3), pages 1553-1560, September.
    2. Friedman, Milton, 1992. "Do Old Fallacies Ever Die?," Journal of Economic Literature, American Economic Association, vol. 30(4), pages 2129-2132, December.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, Enero-Abr.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roya Amjadi & Wendy Martinez, 2021. "The 2016 Data Challenge of the American Statistical Association," Computational Statistics, Springer, vol. 36(3), pages 1553-1560, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    2. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    3. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    4. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    5. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    6. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    7. John Dawson & Amit Sen, 2007. "New evidence on the convergence of international income from a group of 29 countries," Empirical Economics, Springer, vol. 33(2), pages 199-230, September.
    8. William Gale & Samuel Brown, 2013. "Small Business, Innovation, and Tax Policy: A Review," National Tax Journal, National Tax Association;National Tax Journal, vol. 66(4), pages 871-892, December.
    9. Mustafa Gömleksiz & Ahmet Şahbaz & Birol Mercan, 2017. "Regional Economic Convergence in Turkey: Does the Government Really Matter for?," Economies, MDPI, vol. 5(3), pages 1-16, July.
    10. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    11. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    12. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    13. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    14. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    15. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    16. Caloffi, Annalisa & Freo, Marzia & Ghinoi, Stefano & Mariani, Marco & Rossi, Federica, 2022. "Assessing the effects of a deliberate policy mix: The case of technology and innovation advisory services and innovation vouchers," Research Policy, Elsevier, vol. 51(6).
    17. Reizer, Balázs, 2022. "Employment and Wage Consequences of Flexible Wage Components," Labour Economics, Elsevier, vol. 78(C).
    18. Jiannan Lu & Peng Ding & Tirthankar Dasgupta, 2018. "Treatment Effects on Ordinal Outcomes: Causal Estimands and Sharp Bounds," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 540-567, October.
    19. Steven N. Durlauf & Andros Kourtellos & Chih Ming Tan, 2008. "Empirics of Growth and Development," Chapters, in: Amitava Krishna Dutt & Jaime Ros (ed.), International Handbook of Development Economics, Volumes 1 & 2, volume 0, chapter 3, Edward Elgar Publishing.
    20. Pozzolo, Alberto Franco, 2004. "Endogenous Growth in Open Economies - A Survey of Major Results," Economics & Statistics Discussion Papers esdp04020, University of Molise, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:36:y:2021:i:3:d:10.1007_s00180-021-01070-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.