IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v25y2010i1p163-182.html
   My bibliography  Save this article

Empirical wavelet analysis of tail and memory properties of LARCH and FIGARCH models

Author

Listed:
  • Agnieszka Jach
  • Piotr Kokoszka

Abstract

No abstract is available for this item.

Suggested Citation

  • Agnieszka Jach & Piotr Kokoszka, 2010. "Empirical wavelet analysis of tail and memory properties of LARCH and FIGARCH models," Computational Statistics, Springer, vol. 25(1), pages 163-182, March.
  • Handle: RePEc:spr:compst:v:25:y:2010:i:1:p:163-182
    DOI: 10.1007/s00180-009-0168-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-009-0168-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-009-0168-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Giraitis, Liudas & Leipus, Remigijus & Robinson, Peter M. & Surgailis, Donatas, 2004. "LARCH, leverage, and long memory," LSE Research Online Documents on Economics 294, London School of Economics and Political Science, LSE Library.
    2. Michel Beine & Sebastien Laurent & Christelle Lecourt, 2002. "Accounting for conditional leptokurtosis and closing days effects in FIGARCH models of daily exchange rates," Applied Financial Economics, Taylor & Francis Journals, vol. 12(8), pages 589-600.
    3. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    4. Liudas Giraitis, 2004. "LARCH, Leverage, and Long Memory," Journal of Financial Econometrics, Oxford University Press, vol. 2(2), pages 177-210.
    5. GIRAITIS, Liudas & KOKOSZKA, Piotr & LEIPUS, Remigijus & TEYSSIÈRE, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," LIDAM Reprints CORE 1594, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    7. Clifford M. Hurvich & Rohit Deo & Julia Brodsky, 1998. "The mean squared error of Geweke and Porter‐Hudak's estimator of the memory parameter of a long‐memory time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(1), pages 19-46, January.
    8. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    9. Richard T. Baillie & Young-Wook Han & Robert J. Myers & Jeongseok Song, 2007. "Long Memory and FIGARCH Models for Daily and High Frequency Commodity Prices," Working Papers 594, Queen Mary University of London, School of Economics and Finance.
    10. Douc, Randal & Roueff, François & Soulier, Philippe, 2008. "On the existence of some processes," Stochastic Processes and their Applications, Elsevier, vol. 118(5), pages 755-761, May.
    11. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2005. "Corrigendum to "Rescaled variance and related tests for long memory in volatility and levels": [J. Econom. 112 (2003) 265-294]," Journal of Econometrics, Elsevier, vol. 126(2), pages 571-572, June.
    12. Marc Henry, 2001. "Robust Automatic Bandwidth for Long Memory," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(3), pages 293-316, May.
    13. Giraitis, Liudas & Kokoszka, Piotr & Leipus, Remigijus & Teyssiere, Gilles, 2003. "Rescaled variance and related tests for long memory in volatility and levels," Journal of Econometrics, Elsevier, vol. 112(2), pages 265-294, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    2. Xiao Wang & Lihong Wang, 2024. "A tail index estimation for long memory processes," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 87(8), pages 947-971, November.
    3. Antypas, Antonios & Koundouri, Phoebe & Kourogenis, Nikolaos, 2013. "Aggregational Gaussianity and barely infinite variance in financial returns," Journal of Empirical Finance, Elsevier, vol. 20(C), pages 102-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    2. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    3. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    4. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Härdle, Wolfgang Karl & Mungo, Julius, 2008. "Value-at-risk and expected shortfall when there is long range dependence," SFB 649 Discussion Papers 2008-006, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.
    7. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.
    8. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    9. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    10. Yixun Xing & Wayne A. Woodward, 2021. "R-Squared-Bootstrapping for Gegenbauer-Type Long Memory," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 773-790, February.
    11. Liudas Giraitis & Donatas Surgailis & Andrius Škarnulis, 2015. "Integrated ARCH, FIGARCH and AR Models: Origins of Long Memory," Working Papers 766, Queen Mary University of London, School of Economics and Finance.
    12. Assaf, Ata, 2016. "MENA stock market volatility persistence: Evidence before and after the financial crisis of 2008," Research in International Business and Finance, Elsevier, vol. 36(C), pages 222-240.
    13. Dark, Jonathan, 2018. "Multivariate models with long memory dependence in conditional correlation and volatility," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 162-180.
    14. T. -N. Nguyen & M. -N. Tran & R. Kohn, 2020. "Recurrent Conditional Heteroskedasticity," Papers 2010.13061, arXiv.org, revised Jan 2022.
    15. Lanciné Bamba & Ouagnina Hili & Abdou Kâ Diongue & Assi N’Guessan, 2021. "M-Estimate for the stationary hyperbolic GARCH models," METRON, Springer;Sapienza Università di Roma, vol. 79(3), pages 303-351, December.
    16. Kwan, Wilson & Li, Wai Keung & Li, Guodong, 2012. "On the estimation and diagnostic checking of the ARFIMA–HYGARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3632-3644.
    17. Ranjit Kumar Paul & Bishal Gurung & Sandipan Samanta, 2015. "Analyzing the Effect of Dual Long Memory Process in Forecasting Agricultural Prices in Different Markets of India," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(4), pages 235-249.
    18. Liudas Giraitis & Donatas Surgailis & Andrius Škarnulis, 2015. "Integrated ARCH, FIGARCH and AR Models: Origins of Long Memory," Working Papers 766, Queen Mary University of London, School of Economics and Finance.
    19. Chaker Aloui, 2015. "Volatility forecasting and risk management in some MENA stock markets: a nonlinear framework," Afro-Asian Journal of Finance and Accounting, Inderscience Enterprises Ltd, vol. 5(2), pages 160-192.
    20. Chkili, Walid & Aloui, Chaker & Nguyen, Duc Khuong, 2012. "Asymmetric effects and long memory in dynamic volatility relationships between stock returns and exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(4), pages 738-757.

    More about this item

    Keywords

    Heavy tails; Long memory; Volatility; Wavelets; 62M10; 42C40;
    All these keywords.

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:25:y:2010:i:1:p:163-182. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.