IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i3d10.1007_s10584-020-02784-5.html
   My bibliography  Save this article

EMF-33 insights on bioenergy with carbon capture and storage (BECCS)

Author

Listed:
  • Matteo Muratori

    (National Renewable Energy Laboratory (analysis performed while at Pacific Northwest National Laboratory))

  • Nico Bauer

    (Potsdam Institute for Climate Impact Research (PIK))

  • Steven K. Rose

    (Electric Power Research Institute (EPRI))

  • Marshall Wise

    (Pacific Northwest National Laboratory – Joint Global Change Research Institute)

  • Vassilis Daioglou

    (PBL Netherlands Environmental Assessment Agency
    Utrecht University)

  • Yiyun Cui

    (Pacific Northwest National Laboratory – Joint Global Change Research Institute)

  • Etsushi Kato

    (Institute of Applied Energy)

  • Matthew Gidden

    (International Institute for Applied Systems Analysis (IIASA))

  • Jessica Strefler

    (Potsdam Institute for Climate Impact Research (PIK))

  • Shinichiro Fujimori

    (Kyoto University
    National Institute for Environmental Studies (NIES))

  • Ronald D. Sands

    (U.S. Department of Agriculture, Economic Research Service)

  • Detlef P. Vuuren

    (PBL Netherlands Environmental Assessment Agency
    Utrecht University)

  • John Weyant

    (Stanford University)

Abstract

This paper explores the potential role of bioenergy coupled to carbon dioxide (CO2) capture and storage (BECCS) in long-term global scenarios. We first validate past insights regarding the potential use of BECCS in achieving climate goals based on results from 11 integrated assessment models (IAMs) that participated in the 33rd study of the Stanford Energy Modeling Forum (EMF-33). As found in previous studies, our results consistently project large-scale cost-effective BECCS deployment. However, we also find a strong synergistic nexus between CCS and biomass, with bioenergy the preferred fuel for CCS as the climate constraint increases. Specifically, the share of bioenergy that is coupled to CCS technologies increases since CCS effectively enhances the emissions mitigation capacity of bioenergy. For the models that include BECCS technologies across multiple sectors, there is significant deployment in conjunction with liquid fuel or hydrogen production to decarbonize the transportation sector. Using a wide set of scenarios, we find carbon removal to be crucial to achieving goals consistent with 1.5 °C warming. However, we find earlier BECCS deployment but not necessarily greater use in the long-term since ultimately deployment is limited by economic competition with other carbon-free technologies, especially in the electricity sector, by land-use competition (especially with food) affecting biomass feedstock availability and price, and by carbon storage limitations. The extent of BECCS deployment varies based on model assumptions, with BECCS deployment competitive in some models below carbon prices of 100 US$/tCO2. Without carbon removal, 2 °C is infeasible in some models, while those that solve find similar levels of bioenergy use but substantially greater mitigation costs. Overall, the paper provides needed transparency regarding BECCS’ role, and results highlight a strong nexus between bioenergy and CCS, and a large reliance on not-yet-commercial BECCS technologies for achieving climate goals.

Suggested Citation

  • Matteo Muratori & Nico Bauer & Steven K. Rose & Marshall Wise & Vassilis Daioglou & Yiyun Cui & Etsushi Kato & Matthew Gidden & Jessica Strefler & Shinichiro Fujimori & Ronald D. Sands & Detlef P. Vuu, 2020. "EMF-33 insights on bioenergy with carbon capture and storage (BECCS)," Climatic Change, Springer, vol. 163(3), pages 1621-1637, December.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02784-5
    DOI: 10.1007/s10584-020-02784-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02784-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02784-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Klein & Gunnar Luderer & Elmar Kriegler & Jessica Strefler & Nico Bauer & Marian Leimbach & Alexander Popp & Jan Dietrich & Florian Humpenöder & Hermann Lotze-Campen & Ottmar Edenhofer, 2014. "The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE," Climatic Change, Springer, vol. 123(3), pages 705-718, April.
    2. Daniel L. Sanchez & Daniel M. Kammen, 2016. "A commercialization strategy for carbon-negative energy," Nature Energy, Nature, vol. 1(1), pages 1-4, January.
    3. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(3), pages 243-243, December.
    4. T. Gasser & C. Guivarch & K. Tachiiri & C. D. Jones & P. Ciais, 2015. "Negative emissions physically needed to keep global warming below 2 °C," Nature Communications, Nature, vol. 6(1), pages 1-7, November.
    5. Nico Bauer & Steven K. Rose & Shinichiro Fujimori & Detlef P. van Vuuren & John Weyant & Marshall Wise & Yiyun Cui & Vassilis Daioglou & Matthew J. Gidden & Etsushi Kato & Alban Kitous & Florian Lebla, 2018. "Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison," Post-Print hal-01972038, HAL.
    6. Barbara Koelbl & Machteld Broek & André Faaij & Detlef Vuuren, 2014. "Uncertainty in Carbon Capture and Storage (CCS) deployment projections: a cross-model comparison exercise," Climatic Change, Springer, vol. 123(3), pages 461-476, April.
    7. Anonymous, 2013. "Introduction to the Issue," Journal of Wine Economics, Cambridge University Press, vol. 8(2), pages 129-130, November.
    8. Jasper Vliet & Andries Hof & Angelica Mendoza Beltran & Maarten Berg & Sebastiaan Deetman & Michel Elzen & Paul Lucas & Detlef Vuuren, 2014. "The impact of technology availability on the timing and costs of emission reductions for achieving long-term climate targets," Climatic Change, Springer, vol. 123(3), pages 559-569, April.
    9. Steven Rose & Elmar Kriegler & Ruben Bibas & Katherine Calvin & Alexander Popp & Detlef Vuuren & John Weyant, 2014. "Bioenergy in energy transformation and climate management," Climatic Change, Springer, vol. 123(3), pages 477-493, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    2. Qing Wang & Hanbing Xiong & Tingzhen Ming, 2022. "Methods of Large-Scale Capture and Removal of Atmospheric Greenhouse Gases," Energies, MDPI, vol. 15(18), pages 1-5, September.
    3. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J. Gidden & Estsushi Kato & Steven K. R, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Climatic Change, Springer, vol. 170(3), pages 1-21, February.
    4. Arent, Douglas J. & Green, Peter & Abdullah, Zia & Barnes, Teresa & Bauer, Sage & Bernstein, Andrey & Berry, Derek & Berry, Joe & Burrell, Tony & Carpenter, Birdie & Cochran, Jaquelin & Cortright, Ran, 2022. "Challenges and opportunities in decarbonizing the U.S. energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    5. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J Gidden & Estsushi Kato & Steven K Ros, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Post-Print hal-03558507, HAL.
    6. Matamala, Yolanda & Flores, Francisco & Arriet, Andrea & Khan, Zarrar & Feijoo, Felipe, 2023. "Probabilistic feasibility assessment of sequestration reliance for climate targets," Energy, Elsevier, vol. 272(C).
    7. Xu Deng & Fei Teng & Minpeng Chen & Zhangliu Du & Bin Wang & Renqiang Li & Pan Wang, 2024. "Exploring negative emission potential of biochar to achieve carbon neutrality goal in China," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    8. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    9. Lefvert, Adrian & Grönkvist, Stefan, 2024. "Lost in the scenarios of negative emissions: The role of bioenergy with carbon capture and storage (BECCS)," Energy Policy, Elsevier, vol. 184(C).
    10. Vassilis Daioglou & Steven K. Rose & Nico Bauer & Alban Kitous & Matteo Muratori & Fuminori Sano & Shinichiro Fujimori & Matthew J. Gidden & Etsushi Kato & Kimon Keramidas & David Klein & Florian Lebl, 2020. "Bioenergy technologies in long-run climate change mitigation: results from the EMF-33 study," Climatic Change, Springer, vol. 163(3), pages 1603-1620, December.
    11. Steven K Rose & Nico Bauer & Alexander Popp & John Weyant & Shinichiro Fujimori & Petr Havlik & Marshall Wise & Detlef P Vuuren, 2020. "An overview of the Energy Modeling Forum 33rd study: assessing large-scale global bioenergy deployment for managing climate change," Climatic Change, Springer, vol. 163(3), pages 1539-1551, December.
    12. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    2. Zhou, Hui & Park, Ah-Hyung Alissa, 2020. "Bio-energy with carbon capture and storage via alkaline thermal Treatment: Production of high purity H2 from wet wheat straw grass with CO2 capture," Applied Energy, Elsevier, vol. 264(C).
    3. Jérôme Hilaire & Jan C. Minx & Max W. Callaghan & Jae Edmonds & Gunnar Luderer & Gregory F. Nemet & Joeri Rogelj & Maria Mar Zamora, 2019. "Negative emissions and international climate goals—learning from and about mitigation scenarios," Climatic Change, Springer, vol. 157(2), pages 189-219, November.
    4. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    5. Holly Jean Buck, 2016. "Rapid scale-up of negative emissions technologies: social barriers and social implications," Climatic Change, Springer, vol. 139(2), pages 155-167, November.
    6. Arroyo-Currás, Tabaré & Bauer, Nico & Kriegler, Elmar & Schwanitz, Valeria Jana & Luderer, Gunnar & Aboumahboub, Tino & Giannousakis, Anastasis & Hilaire, Jérôme, 2015. "Carbon leakage in a fragmented climate regime: The dynamic response of global energy markets," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 192-203.
    7. Camilla C. N. Oliveira & Gerd Angelkorte & Pedro R. R. Rochedo & Alexandre Szklo, 2021. "The role of biomaterials for the energy transition from the lens of a national integrated assessment model," Climatic Change, Springer, vol. 167(3), pages 1-22, August.
    8. Ranjana Raghunathan, 2022. "Everyday Intimacies and Inter-Ethnic Relationships: Tracing Entanglements of Gender and Race in Multicultural Singapore," Sociological Research Online, , vol. 27(1), pages 77-94, March.
    9. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    10. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    11. Songsore, Emmanuel & Buzzelli, Michael, 2014. "Social responses to wind energy development in Ontario: The influence of health risk perceptions and associated concerns," Energy Policy, Elsevier, vol. 69(C), pages 285-296.
    12. Tapsuwan, Sorada & Polyakov, Maksym & Bark, Rosalind & Nolan, Martin, 2015. "Valuing the Barmah–Millewa Forest and in stream river flows: A spatial heteroskedasticity and autocorrelation consistent (SHAC) approach," Ecological Economics, Elsevier, vol. 110(C), pages 98-105.
    13. Omar Al-Ubaydli & John List & Claire Mackevicius & Min Sok Lee & Dana Suskind, 2019. "How Can Experiments Play a Greater Role in Public Policy? 12 Proposals from an Economic Model of Scaling," Artefactual Field Experiments 00679, The Field Experiments Website.
    14. Nepomuceno, Marcelo Vinhal & Laroche, Michel, 2015. "The impact of materialism and anti-consumption lifestyles on personal debt and account balances," Journal of Business Research, Elsevier, vol. 68(3), pages 654-664.
    15. Bertschek, Irene & Kesler, Reinhold, 2022. "Let the user speak: Is feedback on Facebook a source of firms’ innovation?," Information Economics and Policy, Elsevier, vol. 60(C).
    16. Avelino, Flor & Wittmayer, Julia M. & Pel, Bonno & Weaver, Paul & Dumitru, Adina & Haxeltine, Alex & Kemp, René & Jørgensen, Michael S. & Bauler, Tom & Ruijsink, Saskia & O'Riordan, Tim, 2019. "Transformative social innovation and (dis)empowerment," Technological Forecasting and Social Change, Elsevier, vol. 145(C), pages 195-206.
    17. Gigi Foster, 2020. "The behavioural economics of government responses to COVID-19," Journal of Behavioral Economics for Policy, Society for the Advancement of Behavioral Economics (SABE), vol. 4(S3), pages 11-43, December.
    18. Gerards, Ruud & Welters, Ricardo, 2016. "Impact of financial pressure on unemployed job search, job find success and job quality," ROA Research Memorandum 008, Maastricht University, Research Centre for Education and the Labour Market (ROA).
    19. Cairns, George & Wright, George & Fairbrother, Peter, 2016. "Promoting articulated action from diverse stakeholders in response to public policy scenarios: A case analysis of the use of ‘scenario improvisation’ method," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 97-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:3:d:10.1007_s10584-020-02784-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.