IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v163y2020i2d10.1007_s10584-020-02903-2.html
   My bibliography  Save this article

The effects of spatiotemporal patterns of atmospheric CO2 concentration on terrestrial gross primary productivity estimation

Author

Listed:
  • Zhongyi Sun

    (Hainan University
    Hokkaido University)

  • Xiufeng Wang

    (Hokkaido University)

  • Haruhiko Yamamoto

    (Yamaguchi University)

  • Hiroshi Tani

    (Hokkaido University)

  • Tangzhe Nie

    (Northeast Agricultural University)

Abstract

A quantitative understanding of the global gross primary productivity (GPP) and its responses to increasing CO2 levels is critical for quantifying the feedbacks of ecosystems to climate change. This study applied the daily boreal ecosystem productivity simulator (BEPSd) model to estimate the global GPP from 2000 to 2015, compare the estimated GPP with flux tower measurements and other GPP products to verify the estimation accuracy, and analyze the CO2 fertilization effect and conducted a spatial analysis of the effects of the spatiotemporal distribution of the CO2 concentration on the estimation of the GPP. The results showed that the estimates could capture the magnitude, amplitude, distribution, and variation in the GPP well compared with the flux tower measurements and other GPP products. In general, the terrestrial GPP increased as the atmospheric CO2 concentrations increased; however, the CO2 fertilization effect varied based on time and location and was constrained by climatic conditions. The increases in the lower latitudes were more significant than those in the middle and higher latitudes, and seasonal variation characteristics were observed in the middle and higher latitudes. Not considering the CO2 fertilization effect could underestimate the global GPP and its trend, while not considering the spatiotemporal distribution of the CO2 concentration could overestimate the global annual GPP. These results increase our understanding of the variations in carbon flux under future climate change, especially under the conditions of a changing atmospheric CO2 concentration.

Suggested Citation

  • Zhongyi Sun & Xiufeng Wang & Haruhiko Yamamoto & Hiroshi Tani & Tangzhe Nie, 2020. "The effects of spatiotemporal patterns of atmospheric CO2 concentration on terrestrial gross primary productivity estimation," Climatic Change, Springer, vol. 163(2), pages 913-930, November.
  • Handle: RePEc:spr:climat:v:163:y:2020:i:2:d:10.1007_s10584-020-02903-2
    DOI: 10.1007/s10584-020-02903-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02903-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02903-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Sha & Zhang, Jiahua & Bai, Yun & Koju, Upama Ashish & Igbawua, Tertsea & Chang, Qing & Zhang, Da & Yao, Fengmei, 2018. "Evaluation and improvement of the daily boreal ecosystem productivity simulator in simulating gross primary productivity at 41 flux sites across Europe," Ecological Modelling, Elsevier, vol. 368(C), pages 205-232.
    2. Martin G. De Kauwe & Trevor F. Keenan & Belinda E. Medlyn & I. Colin Prentice & Cesar Terrer, 2016. "Satellite based estimates underestimate the effect of CO2 fertilization on net primary productivity," Nature Climate Change, Nature, vol. 6(10), pages 892-893, October.
    3. Li, Xiran & Zhu, Zaichun & Zeng, Hui & Piao, Shilong, 2016. "Estimation of gross primary production in China (1982–2010) with multiple ecosystem models," Ecological Modelling, Elsevier, vol. 324(C), pages 33-44.
    4. A. P. Ballantyne & C. B. Alden & J. B. Miller & P. P. Tans & J. W. C. White, 2012. "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years," Nature, Nature, vol. 488(7409), pages 70-72, August.
    5. Yang, Shihong & Xu, Junzeng & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2016. "Variations of carbon dioxide exchange in paddy field ecosystem under water-saving irrigation in Southeast China," Agricultural Water Management, Elsevier, vol. 166(C), pages 42-52.
    6. Benjamin Poulter & David Frank & Philippe Ciais & Ranga B. Myneni & Niels Andela & Jian Bi & Gregoire Broquet & Josep G. Canadell & Frederic Chevallier & Yi Y. Liu & Steven W. Running & Stephen Sitch , 2014. "Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle," Nature, Nature, vol. 509(7502), pages 600-603, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Han, Yu & Zhang, Zhongxue & Li, Tiecheng & Chen, Peng & Nie, Tangzhe & Zhang, Zuohe & Du, Sicheng, 2023. "Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    4. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    5. Jie Ding & Zhipeng Li & Heyu Zhang & Pu Zhang & Xiaoming Cao & Yiming Feng, 2022. "Quantifying the Aboveground Biomass (AGB) of Gobi Desert Shrub Communities in Northwestern China Based on Unmanned Aerial Vehicle (UAV) RGB Images," Land, MDPI, vol. 11(4), pages 1-17, April.
    6. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    8. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Yu, Haichao & Li, Sien & Ding, Jie & Yang, Tianyi & Wang, Yuexin, 2023. "Water use efficiency and its drivers of two typical cash crops in an arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    10. Rebecca Peters & Jürgen Berlekamp & Ana Lucía & Vittoria Stefani & Klement Tockner & Christiane Zarfl, 2021. "Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece, Albania)," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    11. Kaiqiang Bao & Haifeng Tian & Min Su & Liping Qiu & Xiaorong Wei & Yanjiang Zhang & Jian Liu & Hailong Gao & Jimin Cheng, 2019. "Stability of Ecosystem CO 2 Flux in Response to Changes in Precipitation in a Semiarid Grassland," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    12. Qing Gu & Hui Zheng & Li Yao & Min Wang & Mingguo Ma & Xufeng Wang & Xuguang Tang, 2020. "Performance of the Remotely-Derived Products in Monitoring Gross Primary Production across Arid and Semi-Arid Ecosystems in Northwest China," Land, MDPI, vol. 9(9), pages 1-16, August.
    13. Srinet, Ritika & Nandy, Subrata & Patel, N.R. & Padalia, Hitendra & Watham, Taibanganba & Singh, Sanjeev K. & Chauhan, Prakash, 2023. "Simulation of forest carbon fluxes by integrating remote sensing data into biome-BGC model," Ecological Modelling, Elsevier, vol. 475(C).
    14. Pires, José C.M., 2017. "COP21: The algae opportunity?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 867-877.
    15. Kalyan Annamalai, 2024. "Breathing Planet Earth: Analysis of Keeling’s Data on CO 2 and O 2 with Respiratory Quotient (RQ), Part I: Global Respiratory Quotient (RQ Glob ) of Earth," Energies, MDPI, vol. 17(2), pages 1-35, January.
    16. A. Rashedi & Taslima Khanam & Mirjam Jonkman, 2020. "On Reduced Consumption of Fossil Fuels in 2020 and Its Consequences in Global Environment and Exergy Demand," Energies, MDPI, vol. 13(22), pages 1-14, November.
    17. Jing Peng & Fuqiang Yang & Li Dan & Xiba Tang, 2022. "Estimation of China’s Contribution to Global Greening over the Past Three Decades," Land, MDPI, vol. 11(3), pages 1-16, March.
    18. Bhattarai, Keshav & Adhikari, Ambika P., 2023. "Promoting Urban Farming for Creating Sustainable Cities in Nepal," SocArXiv xz4t7, Center for Open Science.
    19. Liu, Zhenhai & Chen, Bin & Wang, Shaoqiang & Wang, Qinyi & Chen, Jinghua & Shi, Weibo & Wang, Xiaobo & Liu, Yuanyuan & Tu, Yongkai & Huang, Mei & Wang, Junbang & Wang, Zhaosheng & Li, Hui & Zhu, Tongt, 2021. "The impacts of vegetation on the soil surface freezing-thawing processes at permafrost southern edge simulated by an improved process-based ecosystem model," Ecological Modelling, Elsevier, vol. 456(C).
    20. Langholz, Jeff A. & Abeles, Adina, 2014. "Rethinking postgraduate education for marine conservation," Marine Policy, Elsevier, vol. 43(C), pages 372-375.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:163:y:2020:i:2:d:10.1007_s10584-020-02903-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.