IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v287y2023ics0378377423002998.html
   My bibliography  Save this article

Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation

Author

Listed:
  • Han, Yu
  • Zhang, Zhongxue
  • Li, Tiecheng
  • Chen, Peng
  • Nie, Tangzhe
  • Zhang, Zuohe
  • Du, Sicheng

Abstract

The comprehensive greenhouse effect depends on the trade-off between greenhouse gas (GHG) emissions and soil organic carbon sequestration (SOCS) of paddy fields. Investigations of the effect of the straw return on GHG emissions and SOCS under different water management regimes help clarify the strategy to alleviate the comprehensive greenhouse effect of paddy fields. Therefore, a two-year field experiment was conducted to investigate the effect of different water and straw management on GHG emissions, SOCS, and rice yield. The greenhouse effect of paddy fields was quantified by calculating the greenhouse gas emission intensity (GHGI) and net greenhouse gas emission (NGHGE). The field experiment included four treatments: CI: controlled irrigation + straw removal; FI: flooded irrigation + straw removal; CI+SR: controlled irrigation + straw return; and FI+SR: flooded irrigation + straw return. The results showed that straw return could increase the SOCS and rice yield of paddy fields under different water management regimes, and the average SOCS and rice yield of CI+SR were higher than FI+SR. Furthermore, compared with FI, FI+SR promoted the GHG emission and increased the average global warming potential by 36.37%, which significantly increased the average GHGI and NGHGE by 19.95% and 22.63%, respectively. However, the global warming potential of CI+SR had no significant difference with FI due to water-saving irrigation could mitigate CH4 emissions, which caused the average GHGI and NGHGE decrease by 22.02% and 38.45%, respectively. Therefore, straw return combined with water-saving irrigation is an effective strategy to alleviate the comprehensive greenhouse effect of paddy fields.

Suggested Citation

  • Han, Yu & Zhang, Zhongxue & Li, Tiecheng & Chen, Peng & Nie, Tangzhe & Zhang, Zuohe & Du, Sicheng, 2023. "Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
  • Handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002998
    DOI: 10.1016/j.agwat.2023.108434
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377423002998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2023.108434?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Du, Xue-zhu & Hao, Mian & Guo, Li-jin & Li, Shi-hao & Hu, Wan-ling & Sheng, Feng & Li, Cheng-fang, 2022. "Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Chen, Peng & Nie, Tangzhe & Chen, Shuaihong & Zhang, Zhongxue & Qi, Zhijuan & Liu, Wanning, 2019. "Recovery efficiency and loss of 15N-labelled urea in a rice-soil system under water saving irrigation in the Songnen Plain of Northeast China," Agricultural Water Management, Elsevier, vol. 222(C), pages 139-153.
    3. Zhang, Jie & Guo, Yanjie & Han, Jian & Ji, Yanzhi & Zhang, Lijuan, 2021. "Greenhouse gas emissions and net global warming potential of vineyards under different fertilizer and water managements in North China," Agricultural Water Management, Elsevier, vol. 243(C).
    4. Yo Toma & Nukhak Nufita Sari & Koh Akamatsu & Shingo Oomori & Osamu Nagata & Seiichi Nishimura & Benito H. Purwanto & Hideto Ueno, 2019. "Effects of Green Manure Application and Prolonging Mid-Season Drainage on Greenhouse Gas Emission from Paddy Fields in Ehime, Southwestern Japan," Agriculture, MDPI, vol. 9(2), pages 1-17, February.
    5. Wang, Chong & Zhao, Jiongchao & Feng, Yupeng & Shang, Mengfei & Bo, Xiaozhi & Gao, Zhenzhen & Chen, Fu & Chu, Qingquan, 2021. "Optimizing tillage method and irrigation schedule for greenhouse gas mitigation, yield improvement, and water conservation in wheat–maize cropping systems," Agricultural Water Management, Elsevier, vol. 248(C).
    6. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Sabina Yeasmin & Assaduzzaman & Md. Shirajul Kabir & Md. Parvez Anwar & A. K. M. Mominul Islam & Tahsina Sharmin Hoque, 2022. "Influence of Organic Amendments on Soil Carbon Sequestration Potential of Paddy Soils under Two Irrigation Regimes," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    8. Le Qi & Hai-Dong Niu & Peng Zhou & Rui-Jie Jia & Ming Gao, 2018. "Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils," Sustainability, MDPI, vol. 10(5), pages 1-17, May.
    9. Wang, Hong & Zhang, Yan & Zhang, Yaojun & McDaniel, Marshall D. & Sun, Lan & Su, Wei & Fan, Xiaorong & Liu, Shuhua & Xiao, Xin, 2020. "Water-saving irrigation is a ‘win-win’ management strategy in rice paddies – With both reduced greenhouse gas emissions and enhanced water use efficiency," Agricultural Water Management, Elsevier, vol. 228(C).
    10. Mengqi Sun & Baoyu Chen & Hongjun Wang & Nan Wang & Taigang Ma & Yingshun Cui & Tianhao Luan & Seongjun Chun & Chunguang Liu & Lichun Wang, 2021. "Microbial Interactions and Roles in Soil Fertility in Seasonal Freeze-Thaw Periods under Different Straw Returning Strategies," Agriculture, MDPI, vol. 11(8), pages 1-15, August.
    11. Yang, Shihong & Xu, Junzeng & Liu, Xiaoyin & Zhang, Jiangang & Wang, Yijiang, 2016. "Variations of carbon dioxide exchange in paddy field ecosystem under water-saving irrigation in Southeast China," Agricultural Water Management, Elsevier, vol. 166(C), pages 42-52.
    12. Tangzhe Nie & Peng Chen & Zhongxue Zhang & Zhijuan Qi & Yanyu Lin & Dan Xu, 2019. "Effects of Different Types of Water and Nitrogen Fertilizer Management on Greenhouse Gas Emissions, Yield, and Water Consumption of Paddy Fields in Cold Region of China," IJERPH, MDPI, vol. 16(9), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Xue-zhu & Hao, Mian & Guo, Li-jin & Li, Shi-hao & Hu, Wan-ling & Sheng, Feng & Li, Cheng-fang, 2022. "Integrated assessment of carbon footprint and economic profit from paddy fields under microbial decaying agents with diverse water regimes in central China," Agricultural Water Management, Elsevier, vol. 262(C).
    2. Jianyi Huang & Tangzhe Nie & Tiecheng Li & Peng Chen & Zhongxue Zhang & Shijiang Zhu & Zhongyi Sun & Lihua E, 2022. "Effects of Straw Incorporation Years and Water-Saving Irrigation on Greenhouse Gas Emissions from Paddy Fields in Cold Region of Northeast China," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
    3. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Wang, Chong & Gao, Zhenzhen & Zhao, Jiongchao & Feng, Yupeng & Laraib, Iqra & Shang, Mengfei & Wang, Kaicheng & Chen, Fu & Chu, Qingquan, 2022. "Irrigation-induced hydrothermal variation affects greenhouse gas emissions and crop production," Agricultural Water Management, Elsevier, vol. 260(C).
    5. Feng, Z.Y. & Qin, T. & Du, X.Z. & Sheng, F. & Li, C.F., 2021. "Effects of irrigation regime and rice variety on greenhouse gas emissions and grain yields from paddy fields in central China," Agricultural Water Management, Elsevier, vol. 250(C).
    6. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    7. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    8. Haihong Song & Jianming Wang & Ankit Garg & Xuankai Lin & Qian Zheng & Susmita Sharma, 2019. "Potential of Novel Biochars Produced from Invasive Aquatic Species Outside Food Chain in Removing Ammonium Nitrogen: Comparison with Conventional Biochars and Clinoptilolite," Sustainability, MDPI, vol. 11(24), pages 1-18, December.
    9. Li, Cheng & Li, Zhaozhe & Zhang, Fangmin & Lu, Yanyu & Duan, Chunfeng & Xu, Yang, 2023. "Seasonal dynamics of carbon dioxide and water fluxes in a rice-wheat rotation system in the Yangtze-Huaihe region of China," Agricultural Water Management, Elsevier, vol. 275(C).
    10. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    11. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    12. Jingmiao Shao & Chunyu Gao & Patience Afi Seglah & Jie Xie & Li Zhao & Yuyun Bi & Yajing Wang, 2023. "Analysis of the Available Straw Nutrient Resources and Substitution of Chemical Fertilizers with Straw Returned Directly to the Field in China," Agriculture, MDPI, vol. 13(6), pages 1-20, June.
    13. Wei, Jun & Cui, Yuanlai & Zhou, Sihang & Luo, Yufeng, 2022. "Regional water-saving potential calculation method for paddy rice based on remote sensing," Agricultural Water Management, Elsevier, vol. 267(C).
    14. Ariani, Miranti & Hanudin, Eko & Haryono, Eko, 2022. "The effect of contrasting soil textures on the efficiency of alternate wetting-drying to reduce water use and global warming potential," Agricultural Water Management, Elsevier, vol. 274(C).
    15. Ajay Philip & Rahul R. Marathe, 2022. "A New Green Labeling Scheme for Agri-Food Supply Chains: Equilibrium and Information Sharing under Uncertainties," Sustainability, MDPI, vol. 14(23), pages 1-34, November.
    16. Mohamed Mehana & Mohamed Abdelrahman & Yasmin Emadeldin & Jai S. Rohila & Raghupathy Karthikeyan, 2021. "Impact of Genetic Improvements of Rice on Its Water Use and Effects of Climate Variability in Egypt," Agriculture, MDPI, vol. 11(9), pages 1-14, September.
    17. Ahmad, Irshad & Yan, Zhengang & Kamran, Muhammad & Ikram, Khushnuma & Ghani, Muhammad Usman & Hou, Fujiang, 2022. "Nitrogen management and supplemental irrigation affected greenhouse gas emissions, yield and nutritional quality of fodder maize in an arid region," Agricultural Water Management, Elsevier, vol. 269(C).
    18. Riya Sawarkar & Adnan Shakeel & Piyush A. Kokate & Lal Singh, 2022. "Organic Wastes Augment the Eco-Restoration Potential of Bamboo Species on Fly Ash-Degraded Land: A Field Study," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    19. Yu, Haichao & Li, Sien & Ding, Jie & Yang, Tianyi & Wang, Yuexin, 2023. "Water use efficiency and its drivers of two typical cash crops in an arid area of Northwest China," Agricultural Water Management, Elsevier, vol. 287(C).
    20. Yang Liu & Xiaoyu Liu & Ni Ren & Yanfang Feng & Lihong Xue & Linzhang Yang, 2019. "Effect of Pyrochar and Hydrochar on Water Evaporation in Clayey Soil under Greenhouse Cultivation," IJERPH, MDPI, vol. 16(14), pages 1-10, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:287:y:2023:i:c:s0378377423002998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.