IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i11p1878-d967285.html
   My bibliography  Save this article

Effects of Straw Incorporation Years and Water-Saving Irrigation on Greenhouse Gas Emissions from Paddy Fields in Cold Region of Northeast China

Author

Listed:
  • Jianyi Huang

    (School of Water Conservancy and Electric Power, Heilongjiang University, Harbin 150006, China)

  • Tangzhe Nie

    (School of Water Conservancy and Electric Power, Heilongjiang University, Harbin 150006, China)

  • Tiecheng Li

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Efficient Use of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Northeast Agricultural University, Harbin 150030, China)

  • Peng Chen

    (College of Agricultural Science and Engineering, Hohai University, Nanjing 210024, China)

  • Zhongxue Zhang

    (School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
    Key Laboratory of Efficient Use of Agricultural Water Resources, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Northeast Agricultural University, Harbin 150030, China)

  • Shijiang Zhu

    (College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang 443002, China)

  • Zhongyi Sun

    (College of Ecology and Environment, Hainan University, Haikou 570208, China)

  • Lihua E

    (School of Water Conservancy and Electric Power, Heilongjiang University, Harbin 150006, China)

Abstract

Straw incorporation has a variety of impacts on greenhouse gas (GHG) emissions. However, few studies have focused on the effects of multi-year straw incorporation. In this study, a field experiment was established to study the effects of straw incorporation and water-saving irrigation on GHG emissions in the cold region of Northeast China. The following four treatments were included: (i) controlled irrigation (CI) with 1-year straw incorporation (C1), (ii) controlled irrigation with 5-year straw incorporation (C5), (iii) flooded irrigation (FI) with 1-year straw incorporation (F1), and (iv) flooded irrigation with 5-year straw incorporation (F5). The fluxes of N 2 O, CO 2 , and CH 4 were measured by the static chamber–gas chromatography method, and their global warming potential ( GWP ) and greenhouse gas intensity ( GHGI ) in units of CO 2 -equivalent at the 100-year scale were calculated. The results showed that the 5-year straw incorporation reduced N 2 O emissions but increased CH 4 emissions. Compared with C1 and F1, C5 and F5 reduced N 2 O emissions by 73.1% and 44.9%, respectively, while increasing the CH 4 emissions by 101.7 and 195.8%, respectively. Under different irrigation regimes, CI reduced CH 4 emissions by 50.4–79.7% while increasing CO 2 emissions by 8.2–44.9% compared with FI. The contribution of N 2 O and CO 2 emissions were relatively high at the mature and milk stages, respectively, with a range of 16–54% and 41–52% for the treatments. In contrast, CH 4 emissions were mainly manifested at the tillering stage, with a contribution of 36–58% for the treatments. Affected by higher CH 4 emissions in FI, the GWP of CI was 1.4–47.6% lower than FI. In addition, the yield of CI was 10.0–11.5% higher than FI, which resulted in a GHGI of 11.5–52.4% lower than FI, with C5 being the lowest. The irrigation regime of CI combined with 5-year straw incorporation was an effective agronomic measure to increase yield and reduce GHG emissions from paddy fields in the cold region of Northeast China.

Suggested Citation

  • Jianyi Huang & Tangzhe Nie & Tiecheng Li & Peng Chen & Zhongxue Zhang & Shijiang Zhu & Zhongyi Sun & Lihua E, 2022. "Effects of Straw Incorporation Years and Water-Saving Irrigation on Greenhouse Gas Emissions from Paddy Fields in Cold Region of Northeast China," Agriculture, MDPI, vol. 12(11), pages 1-15, November.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1878-:d:967285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/11/1878/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/11/1878/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Peng & Nie, Tangzhe & Chen, Shuaihong & Zhang, Zhongxue & Qi, Zhijuan & Liu, Wanning, 2019. "Recovery efficiency and loss of 15N-labelled urea in a rice-soil system under water saving irrigation in the Songnen Plain of Northeast China," Agricultural Water Management, Elsevier, vol. 222(C), pages 139-153.
    2. Xu, Junzeng & Peng, Shizhang & Yang, Shihong & Wang, Weiguang, 2012. "Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements," Agricultural Water Management, Elsevier, vol. 104(C), pages 184-192.
    3. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Tangzhe Nie & Peng Chen & Zhongxue Zhang & Zhijuan Qi & Yanyu Lin & Dan Xu, 2019. "Effects of Different Types of Water and Nitrogen Fertilizer Management on Greenhouse Gas Emissions, Yield, and Water Consumption of Paddy Fields in Cold Region of China," IJERPH, MDPI, vol. 16(9), pages 1-16, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Tangzhe & Huang, Jianyi & Zhang, Zhongxue & Chen, Peng & Li, Tiecheng & Dai, Changlei, 2023. "The inhibitory effect of a water-saving irrigation regime on CH4 emission in Mollisols under straw incorporation for 5 consecutive years," Agricultural Water Management, Elsevier, vol. 278(C).
    2. Han, Yu & Zhang, Zhongxue & Li, Tiecheng & Chen, Peng & Nie, Tangzhe & Zhang, Zuohe & Du, Sicheng, 2023. "Straw return alleviates the greenhouse effect of paddy fields by increasing soil organic carbon sequestration under water-saving irrigation," Agricultural Water Management, Elsevier, vol. 287(C).
    3. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    4. Hasan Mirzakhaninafchi & Manjeet Singh & Anoop Kumar Dixit & Apoorv Prakash & Shikha Sharda & Jugminder Kaur & Ali Mirzakhani Nafchi, 2022. "Performance Assessment of a Sensor-Based Variable-Rate Real-Time Fertilizer Applicator for Rice Crop," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    5. Shan, Linan & He, Yunfeng & Chen, Jie & Huang, Qian & Lian, Xu & Wang, Hongcai & Liu, Yili, 2015. "Nitrogen surface runoff losses from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China," Agricultural Water Management, Elsevier, vol. 159(C), pages 255-263.
    6. Xiangwen Wu & Shuying Zang & Dalong Ma & Jianhua Ren & Qiang Chen & Xingfeng Dong, 2019. "Emissions of CO 2 , CH 4 , and N 2 O Fluxes from Forest Soil in Permafrost Region of Daxing’an Mountains, Northeast China," IJERPH, MDPI, vol. 16(16), pages 1-14, August.
    7. Han, Huanhao & Gao, Rong & Cui, Yuanlai & Gu, Shixiang, 2022. "A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes," Agricultural Water Management, Elsevier, vol. 272(C).
    8. Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
    9. Ajay Philip & Rahul R. Marathe, 2022. "A New Green Labeling Scheme for Agri-Food Supply Chains: Equilibrium and Information Sharing under Uncertainties," Sustainability, MDPI, vol. 14(23), pages 1-34, November.
    10. Wang, Weiguang & Yu, Zhongbo & Zhang, Wei & Shao, Quanxi & Zhang, Yiwei & Luo, Yufeng & Jiao, Xiyun & Xu, Junzeng, 2014. "Responses of rice yield, irrigation water requirement and water use efficiency to climate change in China: Historical simulation and future projections," Agricultural Water Management, Elsevier, vol. 146(C), pages 249-261.
    11. J.C. Zhao & W.H. Su & S.H. Fan & C.J. Cai & X.W. Zhu & C. Peng & X.L. Tang, 2016. "Effects of various fertilization depths on ammonia volatilization in Moso bamboo (Phyllostachys edulis) forests," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 62(3), pages 128-134.
    12. Shi, Xinrui & Hu, Kelin & Batchelor, William D. & Liang, Hao & Wu, Yali & Wang, Qihui & Fu, Jin & Cui, Xiaoqing & Zhou, Feng, 2020. "Exploring optimal nitrogen management strategies to mitigate nitrogen losses from paddy soil in the middle reaches of the Yangtze River," Agricultural Water Management, Elsevier, vol. 228(C).
    13. Liu, Xiaoyin & Xu, Junzeng & Liu, Boyi & Wang, Weiguang & Li, Yawei, 2019. "A novel model of water-heat coupling for water-saving irrigated rice fields based on water and energy balance: Model formulation and verification," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    14. Yang, Yang & Luo, Yufeng & Wu, Conglin & Zheng, Hezhen & Zhang, Lei & Cui, Yuanlai & Sun, Ningning & Wang, Li, 2019. "Evaluation of six equations for daily reference evapotranspiration estimating using public weather forecast message for different climate regions across China," Agricultural Water Management, Elsevier, vol. 222(C), pages 386-399.
    15. Zhu, Yan & Yang, Jinzhong & Ye, Ming & Sun, Huaiwei & Shi, Liangsheng, 2017. "Development and application of a fully integrated model for unsaturated-saturated nitrogen reactive transport," Agricultural Water Management, Elsevier, vol. 180(PA), pages 35-49.
    16. He, Yupu & Jianyun, Zhang & Shihong, Yang & Dalin, Hong & Junzeng, Xu, 2019. "Effect of controlled drainage on nitrogen losses from controlled irrigation paddy fields through subsurface drainage and ammonia volatilization after fertilization," Agricultural Water Management, Elsevier, vol. 221(C), pages 231-237.
    17. Yue Wang & Ge Song & Wenying Li, 2021. "The Interaction Relationship between Land Use Patterns and Socioeconomic Factors Based on Wavelet Analysis: A Case Study of the Black Soil Region of Northeast China," Land, MDPI, vol. 10(11), pages 1-19, November.
    18. Alhaj Hamoud, Yousef & Shaghaleh, Hiba & Sheteiwy, Mohamed & Guo, Xiangping & Elshaikh, Nazar A. & Ullah Khan, Nasr & Oumarou, Abdoulaye & Rahim, Shah Fahad, 2019. "Impact of alternative wetting and soil drying and soil clay content on the morphological and physiological traits of rice roots and their relationships to yield and nutrient use-efficiency," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    19. Ma, Chao & Wang, Jun & Li, Jiusheng, 2023. "Utilization of soil and fertilizer nitrogen supply under mulched drip irrigation with various water qualities in arid regions," Agricultural Water Management, Elsevier, vol. 280(C).
    20. Yan, Jun & Wu, Qixia & Qi, Dongliang & Zhu, Jianqiang, 2022. "Rice yield, water productivity, and nitrogen use efficiency responses to nitrogen management strategies under supplementary irrigation for rain-fed rice cultivation," Agricultural Water Management, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:11:p:1878-:d:967285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.