IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i16p7470-d1727167.html
   My bibliography  Save this article

Assessing Global Responsibility: Comparative Analysis of Fairness in Energy Transition Between Developing and Developed Countries

Author

Listed:
  • Jihan Ahmad As-sya’bani

    (Institute of Physics, School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany)

  • Muhammad Zubair Abbas

    (Institute of Physics, School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany)

  • Alzobaer Alshaeki

    (Institute of Physics, School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany)

  • Herena Torio

    (Institute of Physics, School of Mathematics and Science, Carl von Ossietzky University of Oldenburg, 26129 Oldenburg, Germany)

Abstract

The increasing recognition of historical emissions and uneven financial capacities among developed and developing nations has highlighted the need to look for equity and fairness in global climate action. This study aims to present a revised method that enables mapping the current state of fairness in the global energy transition, addressing both the contribution to the climate crisis and the burden that different countries face in coping with the climate disasters resulting from it. For this purpose, we revise various methods and indices used to measure the progress of energy transition efforts, as well as existing methodologies to appraise the responsibility for climate change and the resulting financial capacity. We propose changes to the existing methods to allow for a clearer analysis of the fairness of the global energy transition. An exemplary use of the proposed modified methodology is applied to six countries that represent developing and developed countries using publicly available data from renowned sources such as IRENA, EM-DAT, and the World Bank, showing the applicability of the method. The main trends in the results highlight the added value of the proposed method. The progress in the energy transition is evaluated in terms of fairness as a transition index by taking into account historical responsibility and financial capacity. Damage from climate-induced disasters and contribution towards climate financing are added as contextual considerations. The country’s historical emissions, GDP, NDC, financial costs of climate-induced disaster, and financing from the Green Climate Fund are used as the basis for the analysis. The findings underscore the differences in energy transition achievement, as well as the differences in pledged and deposited funds among various types of countries. The results demonstrate a disproportionate burden experienced by lower-income nations and depict the ongoing challenges in translating principles of “common but differentiated responsibilities” into concrete outcomes. This study provides an open-source and data-driven perspective that highlights the need for change in global policy discourse and also advocates for the creation of more nuanced, just, and effective approaches to accelerate the clean energy transition worldwide.

Suggested Citation

  • Jihan Ahmad As-sya’bani & Muhammad Zubair Abbas & Alzobaer Alshaeki & Herena Torio, 2025. "Assessing Global Responsibility: Comparative Analysis of Fairness in Energy Transition Between Developing and Developed Countries," Sustainability, MDPI, vol. 17(16), pages 1-24, August.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7470-:d:1727167
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/16/7470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/16/7470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. repec:bla:revinw:v:19:y:1973:i:2:p:133-41 is not listed on IDEAS
    2. A. P. Ballantyne & C. B. Alden & J. B. Miller & P. P. Tans & J. W. C. White, 2012. "Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years," Nature, Nature, vol. 488(7409), pages 70-72, August.
    3. Vaclav Smil, 2010. "Energy Myths and Realities: Bringing Science to the Energy Policy Debate," Books, American Enterprise Institute, number 50339, September.
    4. Sir Claus Moser, 1973. "Social Indicators—Systems, Methods And Problems," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 19(2), pages 133-141, June.
    5. Olivier Godard, 2012. "Ecological debt and historical responsibility revisited - The case of climate change," RSCAS Working Papers 2012/46, European University Institute.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Molyneaux, Lynette & Froome, Craig & Wagner, Liam & Foster, John, 2013. "Australian power: Can renewable technologies change the dominant industry view?," Renewable Energy, Elsevier, vol. 60(C), pages 215-221.
    2. M. Scott Taylor & Juan Moreno Cruz, "undated". "Back to the Future of Green Powered Economies," Working Papers 2014-69, Department of Economics, University of Calgary, revised 29 Sep 2014.
    3. Tooze, Adam (Туз, Адам), 2016. "Europe on the Brink [Европа На Грани]," Ekonomicheskaya Politika / Economic Policy, Russian Presidential Academy of National Economy and Public Administration, vol. 3, pages 138-175, June.
    4. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    5. Krishnan, Sooridarsan & Ghani, Noraini Abd & Aminuddin, Noor Fathanah & Quraishi, Khurrum Shehzad & Azman, Ninna Sakina & Cravotto, Giancarlo & Leveque, Jean-Marc, 2020. "Microwave-assisted lipid extraction from Chlorella vulgaris in water with 0.5%–2.5% of imidazolium based ionic liquid as additive," Renewable Energy, Elsevier, vol. 149(C), pages 244-252.
    6. Huang, Xiaoxun & Hayashi, Kiichiro & Fujii, Minoru & Villa, Ferdinando & Yamazaki, Yuri & Okazawa, Hiromu, 2023. "Identification of potential locations for small hydropower plant based on resources time footprint: A case study in Dan River Basin, China," Renewable Energy, Elsevier, vol. 205(C), pages 293-304.
    7. Juliette N. Rooney-Varga & Florian Kapmeier & John D. Sterman & Andrew P. Jones & Michele Putko & Kenneth Rath, 2020. "The Climate Action Simulation," Simulation & Gaming, , vol. 51(2), pages 114-140, April.
    8. Zhihua Liu & John S. Kimball & Ashley P. Ballantyne & Nicholas C. Parazoo & Wen J. Wang & Ana Bastos & Nima Madani & Susan M. Natali & Jennifer D. Watts & Brendan M. Rogers & Philippe Ciais & Kailiang, 2022. "Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    9. Robert K. Perrons & Adam B. Jaffe & Trinh Le, 2020. "Tracing the Linkages Between Scientific Research and Energy Innovations: A Comparison of Clean and Dirty Technologies," NBER Working Papers 27777, National Bureau of Economic Research, Inc.
    10. Moynihan, Muiris C. & Allwood, Julian M., 2012. "The flow of steel into the construction sector," Resources, Conservation & Recycling, Elsevier, vol. 68(C), pages 88-95.
    11. Joan Martinez-Alier, 2015. "Climate Justice," Development and Change, International Institute of Social Studies, vol. 46(2), pages 381-386, March.
    12. Lambertini, Luca & Orsini, Raimondello & Palestini, Arsen, 2017. "On the instability of the R&D portfolio in a dynamic monopoly. Or, one cannot get two eggs in one basket," International Journal of Production Economics, Elsevier, vol. 193(C), pages 703-712.
    13. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    14. Benjamin K. Sovacool, 2016. "The history and politics of energy transitions: Comparing contested views and finding common ground," WIDER Working Paper Series wp-2016-81, World Institute for Development Economic Research (UNU-WIDER).
    15. Schuelke-Leech, Beth-Anne, 2014. "Volatility in federal funding of energy R&D," Energy Policy, Elsevier, vol. 67(C), pages 943-950.
    16. repec:clg:wpaper:2013-19 is not listed on IDEAS
    17. Foster, John & Wagner, Liam & Liebman, Ariel, 2017. "Economic and investment models for future grids: Final Report Project 3," MPRA Paper 78866, University Library of Munich, Germany.
    18. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Wenmin Zhang & Guy Schurgers & Josep Peñuelas & Rasmus Fensholt & Hui Yang & Jing Tang & Xiaowei Tong & Philippe Ciais & Martin Brandt, 2023. "Recent decrease of the impact of tropical temperature on the carbon cycle linked to increased precipitation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    20. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    21. Robert Petroski & Lowell Wood, 2012. "Sustainable, Full-Scope Nuclear Fission Energy at Planetary Scale," Sustainability, MDPI, vol. 4(11), pages 1-36, November.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:16:p:7470-:d:1727167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.