IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v162y2020i2d10.1007_s10584-020-02797-0.html
   My bibliography  Save this article

Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands

Author

Listed:
  • W. J. W. Botzen

    (Vrije Universiteit Amsterdam
    Utrecht University)

  • M. L. Martinius

    (University of Amsterdam)

  • P. Bröde

    (Leibniz Research Centre for Working Environment and Human Factors (IfADo))

  • M. A. Folkerts

    (Vrije Universiteit Amsterdam, Amsterdam Movement Sciences)

  • P. Ignjacevic

    (Vrije Universiteit Amsterdam)

  • F. Estrada

    (Vrije Universiteit Amsterdam
    Universidad Nacional Autónoma de México)

  • C. N. Harmsen

    (Statistics Netherlands)

  • H. A. M. Daanen

    (Vrije Universiteit Amsterdam, Amsterdam Movement Sciences)

Abstract

This study examines the impacts of climate change on future mortality in the Netherlands and the related economic costs. Our methods account for changes in both cold- and heat-related mortality for different age classes, the time dynamics associated with temperature-related mortality, demographic change and the urban heat island effect. Results show that heat and cold impacts on mortality vary considerably between age classes, with older people being more vulnerable to temperature extremes. The sensitivity of mortality to temperature is higher on hot (4.6%/°C) than cold (2.1%/°C) days for the most vulnerable group (≥ 80 years), and extreme temperatures have long time lags on mortality, especially in the cold. A main finding is that climate change is expected to first decrease total net mortality in the Netherlands due to a dominant effect of less cold-related mortality, but this reverses over time under high warming scenarios, unless additional adaptation measures are taken. The economic valuation of these total net mortality changes indicates that climate change will result in net benefits of up to €2.3 billion using the Value of a Statistical Life Year and €14.5 billion using the Value of a Statistical Life approaches in 2050, while this changes over time in net economic costs under high warming scenarios that can reach up to €17.6 billion in 2085. Implementing adaptation policies that reduce the negative impacts of warming on mortality in the heat can turn these net costs into net benefits by achieving a continued dominating effect of reduced mortality in the cold.

Suggested Citation

  • W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
  • Handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02797-0
    DOI: 10.1007/s10584-020-02797-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02797-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02797-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barreca, Alan I., 2012. "Climate change, humidity, and mortality in the United States," Journal of Environmental Economics and Management, Elsevier, vol. 63(1), pages 19-34.
    2. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    3. Thomas Longden, 2019. "The impact of temperature on mortality across different climate zones," Climatic Change, Springer, vol. 157(2), pages 221-242, November.
    4. Francisco Estrada & W. J. Wouter Botzen & Richard S. J. Tol, 2017. "A global economic assessment of city policies to reduce climate change impacts," Nature Climate Change, Nature, vol. 7(6), pages 403-406, June.
    5. Katie Jenkins & Jim Hall & Vassilis Glenis & Chris Kilsby & Mark McCarthy & Clare Goodess & Duncan Smith & Nick Malleson & Mark Birkin, 2014. "Probabilistic spatial risk assessment of heat impacts and adaptations for London," Climatic Change, Springer, vol. 124(1), pages 105-117, May.
    6. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801.
    7. A. Marsha & S. R. Sain & M. J. Heaton & A. J. Monaghan & O.V. Wilhelmi, 2018. "Influences of climatic and population changes on heat-related mortality in Houston, Texas, USA," Climatic Change, Springer, vol. 146(3), pages 471-485, February.
    8. Scott Sheridan & Cameron Lee & Michael Allen & Laurence Kalkstein, 2012. "Future heat vulnerability in California, Part I: projecting future weather types and heat events," Climatic Change, Springer, vol. 115(2), pages 291-309, November.
    9. Alan Barreca & Karen Clay & Olivier Deschênes & Michael Greenstone & Joseph S. Shapiro, 2015. "Convergence in Adaptation to Climate Change: Evidence from High Temperatures and Mortality, 1900-2004," American Economic Review, American Economic Association, vol. 105(5), pages 247-251, May.
    10. Olivier Deschênes & Enrico Moretti, 2009. "Extreme Weather Events, Mortality, and Migration," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 659-681, November.
    11. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    12. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    13. Muggeo, Vito M. R., 2010. "Analyzing Temperature Effects on Mortality Within the R Environment: The Constrained Segmented Distributed Lag Parameterization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 32(i12).
    14. Scott Sheridan & Michael Allen & Cameron Lee & Laurence Kalkstein, 2012. "Future heat vulnerability in California, Part II: projecting future heat-related mortality," Climatic Change, Springer, vol. 115(2), pages 311-326, November.
    15. Jonathan A. Patz & Diarmid Campbell-Lendrum & Tracey Holloway & Jonathan A. Foley, 2005. "Impact of regional climate change on human health," Nature, Nature, vol. 438(7066), pages 310-317, November.
    16. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2017. "Health Consequences of the Russian Weather," Ecological Economics, Elsevier, vol. 132(C), pages 290-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jack Ngarambe & Mattheos Santamouris & Geun Young Yun, 2022. "The Impact of Urban Warming on the Mortality of Vulnerable Populations in Seoul," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    2. Miguel Ángel Navas-Martín & José Antonio López-Bueno & María Soledad Ascaso-Sánchez & Fernando Follos & José Manuel Vellón & Isidro Juan Mirón & María Yolanda Luna & Gerardo Sánchez-Martínez & Cristin, 2023. "Heat Adaptation among the Elderly in Spain (1983–2018)," IJERPH, MDPI, vol. 20(2), pages 1-10, January.
    3. Armand Landreau & Sirkku Juhola & Alexandra Jurgilevich & Aleksi Räsänen, 2021. "Combining socio-economic and climate projections to assess heat risk," Climatic Change, Springer, vol. 167(1), pages 1-20, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2018. "Misfortunes never come singly: Consecutive weather shocks and mortality in Russia," Economics & Human Biology, Elsevier, vol. 31(C), pages 249-258.
    2. Otrachshenko, Vladimir & Popova, Olga & Solomin, Pavel, 2017. "Health Consequences of the Russian Weather," Ecological Economics, Elsevier, vol. 132(C), pages 290-306.
    3. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    4. Cuong Viet Nguyen & Manh‐Hung Nguyen & Toan Truong Nguyen, 2023. "The impact of cold waves and heat waves on mortality: Evidence from a lower middle‐income country," Health Economics, John Wiley & Sons, Ltd., vol. 32(6), pages 1220-1243, June.
    5. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    6. Giuliano Masiero & Fabrizio Mazzonna & Michael Santarossa, 2022. "The effect of absolute versus relative temperature on health and the role of social care," Health Economics, John Wiley & Sons, Ltd., vol. 31(6), pages 1228-1248, June.
    7. Mariano Javier Rabassa & Christian Garcia-Witulski & Grand Mariana Conte & Julie Rozenberg, 2022. "Valuing mortality attributable to present and future extreme temperatures in Argentina," Asociación Argentina de Economía Política: Working Papers 4590, Asociación Argentina de Economía Política.
    8. Karlsson, Martin & Ziebarth, Nicolas R., 2018. "Population health effects and health-related costs of extreme temperatures: Comprehensive evidence from Germany," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 93-117.
    9. Tahseen Ajaz & Muhammad Tariq Majeed, 2018. "Changing Climate Patterns and Women Health: An Empirical Analysis of District Rawalpindi Pakistan," Global Social Sciences Review, Humanity Only, vol. 3(4), pages 320-342, December.
    10. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    11. Xi Chen & Chih Ming Tan & Xiaobo Zhang & Xin Zhang, 2020. "The effects of prenatal exposure to temperature extremes on birth outcomes: the case of China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1263-1302, October.
    12. Fritz, Manuela, 2021. "Temperature and non-communicable diseases: Evidence from Indonesia's primary health care system," Passauer Diskussionspapiere, Volkswirtschaftliche Reihe V-84-21, University of Passau, Faculty of Business and Economics.
    13. Olivier Deschenes, 2022. "The impact of climate change on mortality in the United States: Benefits and costs of adaptation," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1227-1249, August.
    14. Alan Barreca & Olivier Deschenes & Melanie Guldi, 2018. "Maybe Next Month? Temperature Shocks and Dynamic Adjustments in Birth Rates," Demography, Springer;Population Association of America (PAA), vol. 55(4), pages 1269-1293, August.
    15. Nguyen, Cuong Viet & Nguyen, Manh-Hung & Nguyen, Toan Truong, 2022. "Climate Change, Cold Waves, Heat Waves, and Mortality: Evidence from a Lower Middle-Income Country," GLO Discussion Paper Series 1034, Global Labor Organization (GLO).
    16. Dang, Hai-Anh & Hallegatte, Stephane & Trinh, Trong-Anh, 2023. "Does Global Warming Worsen Poverty and Inequality? An Updated Review," IZA Discussion Papers 16570, Institute of Labor Economics (IZA).
    17. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2013. "Adapting to Climate Change: The Remarkable Decline in the U.S. Temperature-Mortality Relationship over the 20th Century," NBER Working Papers 18692, National Bureau of Economic Research, Inc.
    18. Manuela K. Fritz, 2021. "Temperature and non-communicable diseases: Evidence from Indonesia's primary health care system," Working Papers 206, Bavarian Graduate Program in Economics (BGPE).
    19. Suchita Srinivasan, 2023. "Social Policies and Adaptation to Extreme Weather: Evidence from South Africa," CER-ETH Economics working paper series 23/381, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    20. Gibney, Garreth & McDermott, Thomas K.J. & Cullinan, John, 2023. "Temperature, morbidity, and behavior in milder climates," Economic Modelling, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:162:y:2020:i:2:d:10.1007_s10584-020-02797-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.