IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v159y2020i4d10.1007_s10584-020-02678-6.html
   My bibliography  Save this article

Potential impacts of major nineteenth century volcanic eruptions on temperature over Cape Town, South Africa: 1834–1899

Author

Listed:
  • Jessica Picas

    (University of the Witwatersrand)

  • Stefan Grab

    (University of the Witwatersrand)

Abstract

Improving scientific knowledge of volcanic eruptions and their impact on climate is important for testing and improving climate projection models. Despite substantive work on the impacts of major volcanic eruptions on global to regional scale climate, most studies have focussed on the northern hemisphere, with little information available for the southern hemisphere. Nevertheless, there is emerging evidence suggesting that major volcanic eruptions significantly influence weather patterns and climates of the southern hemisphere. Here we examine the climatic impact of major nineteenth century volcanic eruptions at various temporal scales for southernmost Africa (i.e. Cape Town). The oldest and longest available daily instrumental weather record for southern Africa (the South African Astronomical Observatory record) is used to test possible temperature responses following seven major volcanic eruptions (Cosiguina, 1835; Amargura, 1846; Cotopaxi, 1855; Makian, 1861; Cotopaxi, 1877; Krakatau, 1883; Tarawera, 1886) during the period 1834–1899. Following all the eruptions (for which data are available), a mean negative temperature departure is recorded in Cape Town in the second year post-eruption. The most immediate (first ten months) negative temperature response is noted following the four strongest eruptions. Tarawera, the only SH eruption, recorded the strongest and most immediate (months 1–10) mean negative temperature departure (− 0.54 °C). The importance of investigating post-eruption climatic responses at a seasonal temporal scale is demonstrated; for instance by the identification of cooler than ‘normal’ but extreme unidirectional temperature departures during austral autumn. Similarly, investigations at the monthly temporal scale enabled the identification of an increase in extreme opposing month-to-month temperature variability following such eruptions.

Suggested Citation

  • Jessica Picas & Stefan Grab, 2020. "Potential impacts of major nineteenth century volcanic eruptions on temperature over Cape Town, South Africa: 1834–1899," Climatic Change, Springer, vol. 159(4), pages 523-544, April.
  • Handle: RePEc:spr:climat:v:159:y:2020:i:4:d:10.1007_s10584-020-02678-6
    DOI: 10.1007/s10584-020-02678-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-020-02678-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-020-02678-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joëlle Gergis & Anthony Fowler, 2009. "A history of ENSO events since A.D. 1525: implications for future climate change," Climatic Change, Springer, vol. 92(3), pages 343-387, February.
    2. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    3. M. Sigl & M. Winstrup & J. R. McConnell & K. C. Welten & G. Plunkett & F. Ludlow & U. Büntgen & M. Caffee & N. Chellman & D. Dahl-Jensen & H. Fischer & S. Kipfstuhl & C. Kostick & O. J. Maselli & F. M, 2015. "Timing and climate forcing of volcanic eruptions for the past 2,500 years," Nature, Nature, vol. 523(7562), pages 543-549, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew J. Hannaford & Kristen K. Beck, 2021. "Rainfall variability in southeast and west-central Africa during the Little Ice Age: do documentary and proxy records agree?," Climatic Change, Springer, vol. 168(1), pages 1-22, September.
    2. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    3. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    4. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    5. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    6. Lucia de Strasser, 2017. "Calling for Nexus Thinking in Africa’s Energy Planning," ESP: Energy Scenarios and Policy 263161, Fondazione Eni Enrico Mattei (FEEM).
    7. Samuel Asante Gyamerah & Philip Ngare & Dennis Ikpe, 2018. "Regime-Switching Temperature Dynamics Model for Weather Derivatives," International Journal of Stochastic Analysis, Hindawi, vol. 2018, pages 1-15, July.
    8. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    9. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    10. Bossa, A.Y. & Diekkrüger, B. & Giertz, S. & Steup, G. & Sintondji, L.O. & Agbossou, E.K. & Hiepe, C., 2012. "Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa)," Agricultural Water Management, Elsevier, vol. 115(C), pages 20-37.
    11. Jianhong Mu & Bruce McCarl & Anne Wein, 2013. "Adaptation to climate change: changes in farmland use and stocking rate in the U.S," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(6), pages 713-730, August.
    12. F. Jorge Bornemann & David P. Rowell & Barbara Evans & Dan J. Lapworth & Kamazima Lwiza & David M.J. Macdonald & John H. Marsham & Kindie Tesfaye & Matthew J. Ascott & Celia Way, 2019. "Future changes and uncertainty in decision-relevant measures of East African climate," Climatic Change, Springer, vol. 156(3), pages 365-384, October.
    13. Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
    14. Maria Waldinger, 2015. "The effects of climate change on internal and international migration: implications for developing countries," GRI Working Papers 192, Grantham Research Institute on Climate Change and the Environment.
    15. Nyadzi, Emmanuel, 2016. "Climate Variability Since 1970 and Farmers’ Observations in Northern Ghana," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(2).
    16. Chang, Yen-Chiang & Wang, Nannan, 2010. "Environmental regulations and emissions trading in China," Energy Policy, Elsevier, vol. 38(7), pages 3356-3364, July.
    17. Alejandro del Pozo & Nidia Brunel-Saldias & Alejandra Engler & Samuel Ortega-Farias & Cesar Acevedo-Opazo & Gustavo A. Lobos & Roberto Jara-Rojas & Marco A. Molina-Montenegro, 2019. "Climate Change Impacts and Adaptation Strategies of Agriculture in Mediterranean-Climate Regions (MCRs)," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    18. Basanta Paudel & Yili Zhang & Jianzhong Yan & Raju Rai & Lanhui Li & Xue Wu & Prem Sagar Chapagain & Narendra Raj Khanal, 2020. "Farmers’ understanding of climate change in Nepal Himalayas: important determinants and implications for developing adaptation strategies," Climatic Change, Springer, vol. 158(3), pages 485-502, February.
    19. José Antonio Rodriguez Martin & Juan Dios Jiménez Aguilera & José María Martín Martín & José Antonio Salinas Fernández, 2018. "Crisis in the Horn of Africa: Measurement of Progress Towards Millennium Development Goals," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(2), pages 499-514, January.
    20. Sèyi Fridaïus Ulrich Vanvanhossou & Luc Hippolyte Dossa & Sven König, 2021. "Sustainable Management of Animal Genetic Resources to Improve Low-Input Livestock Production: Insights into Local Beninese Cattle Populations," Sustainability, MDPI, vol. 13(17), pages 1-20, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:159:y:2020:i:4:d:10.1007_s10584-020-02678-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.