IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v146y2018i3d10.1007_s10584-016-1616-2.html
   My bibliography  Save this article

Future risk of record-breaking summer temperatures and its mitigation

Author

Listed:
  • Flavio Lehner

    (National Center for Atmospheric Research)

  • Clara Deser

    (National Center for Atmospheric Research)

  • Benjamin M. Sanderson

    (National Center for Atmospheric Research)

Abstract

The probability that summer temperatures in the future will exceed the hottest on record during 1920–2014 is projected to increase at all land locations with global warming. Within the BRACE project framework we investigate the sensitivity of this projected change in probability to the choice of emissions scenario using two large ensembles of simulations with the Community Earth System Model. The large ensemble size allows for a robust assessment of the probability of record-breaking temperatures. Globally, the probability that any summer during the period 2061–2081 will be warmer than the hottest on record is 80 % for RCP 8.5 and 41 % for RCP 4.5. Hence, mitigation can reduce the risk of record-breaking temperatures by 39 %. The potential for risk reduction is greatest for some of the most populated regions of the globe. In Europe, for example, a potential risk reduction of over 50 % is projected. Model biases and future changes in temperature variance have only minor effects on the results, as their contribution stays well below 10 % for almost all locations.

Suggested Citation

  • Flavio Lehner & Clara Deser & Benjamin M. Sanderson, 2018. "Future risk of record-breaking summer temperatures and its mitigation," Climatic Change, Springer, vol. 146(3), pages 363-375, February.
  • Handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1616-2
    DOI: 10.1007/s10584-016-1616-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-016-1616-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-016-1616-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    2. Chris Huntingford & Philip D. Jones & Valerie N. Livina & Timothy M. Lenton & Peter M. Cox, 2013. "No increase in global temperature variability despite changing regional patterns," Nature, Nature, vol. 500(7462), pages 327-330, August.
    3. Bryan Jones & Brian C. O’Neill & Larry McDaniel & Seth McGinnis & Linda O. Mearns & Claudia Tebaldi, 2015. "Future population exposure to US heat extremes," Nature Climate Change, Nature, vol. 5(7), pages 652-655, July.
    4. Flavio Lehner & Thomas F. Stocker, 2015. "From local perception to global perspective," Nature Climate Change, Nature, vol. 5(8), pages 731-734, August.
    5. James A. Screen & Ian Simmonds, 2010. "The central role of diminishing sea ice in recent Arctic temperature amplification," Nature, Nature, vol. 464(7293), pages 1334-1337, April.
    6. Dim Coumou & Alexander Robinson & Stefan Rahmstorf, 2013. "Global increase in record-breaking monthly-mean temperatures," Climatic Change, Springer, vol. 118(3), pages 771-782, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shoupeng Zhu & Fei Ge & Yi Fan & Ling Zhang & Frank Sielmann & Klaus Fraedrich & Xiefei Zhi, 2020. "Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5 °C and 2 °C global warming," Climatic Change, Springer, vol. 160(3), pages 343-360, June.
    2. Virginia Anne Kowal & Julian Ahlborn & Chantsallkham Jamsranjav & Otgonsuren Avirmed & Rebecca Chaplin-Kramer, 2021. "Modeling Integrated Impacts of Climate Change and Grazing on Mongolia’s Rangelands," Land, MDPI, vol. 10(4), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clifford Chuwah & Twan Noije & Detlef P. Vuuren & Philippe Sager & Wilco Hazeleger, 2016. "Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth," Climatic Change, Springer, vol. 134(1), pages 1-14, January.
    2. Clifford Chuwah & Twan Noije & Detlef Vuuren & Philippe Sager & Wilco Hazeleger, 2016. "Global and regional climate impacts of future aerosol mitigation in an RCP6.0-like scenario in EC-Earth," Climatic Change, Springer, vol. 134(1), pages 1-14, January.
    3. Philippe Goulet Coulombe & Maximilian Gobel, 2020. "Arctic Amplification of Anthropogenic Forcing: A Vector Autoregressive Analysis," Papers 2005.02535, arXiv.org, revised Mar 2021.
    4. Hamidreza Zoraghein & Brian C. O'Neill, 2020. "A spatial population downscaling model for integrated human-environment analysis in the United States," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 43(54), pages 1563-1606.
    5. R Varela & L Rodríguez-Díaz & M deCastro, 2020. "Persistent heat waves projected for Middle East and North Africa by the end of the 21st century," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    6. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.
    7. David Hidalgo García, 2023. "Evaluation and Analysis of the Effectiveness of the Main Mitigation Measures against Surface Urban Heat Islands in Different Local Climate Zones through Remote Sensing," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
    8. Pascalle Smith & Georg Heinrich & Martin Suklitsch & Andreas Gobiet & Markus Stoffel & Jürg Fuhrer, 2014. "Station-scale bias correction and uncertainty analysis for the estimation of irrigation water requirements in the Swiss Rhone catchment under climate change," Climatic Change, Springer, vol. 127(3), pages 521-534, December.
    9. T.M.L. Wigley, 2018. "The Paris warming targets: emissions requirements and sea level consequences," Climatic Change, Springer, vol. 147(1), pages 31-45, March.
    10. Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
    11. Hwang, In Chang, 2013. "Stochastic Kaya model and its applications," MPRA Paper 55099, University Library of Munich, Germany.
    12. Roberto Roson & Richard Damania, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity: an Assessment of Alternative Scenarios," IEFE Working Papers 84, IEFE, Center for Research on Energy and Environmental Economics and Policy, Universita' Bocconi, Milano, Italy.
    13. Le Bars, Dewi, 2018. "Uncertainty in sea level rise projections due to the dependence between contributors," Earth Arxiv uvw3s, Center for Open Science.
    14. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    15. Hamdi-Cherif, Meriem & Waisman, Henri & Guivarch, Céline & Hourcade, Jean-Charles, 2012. "Mitigation costs in second-best economies: time profile of emission reductions and sequencing of accompanying measures," Conference papers 332206, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    16. Schaeffer, Michiel & Gohar, Laila & Kriegler, Elmar & Lowe, Jason & Riahi, Keywan & van Vuuren, Detlef, 2015. "Mid- and long-term climate projections for fragmented and delayed-action scenarios," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 257-268.
    17. Kokou Amega & Yendoubé Laré & Ramchandra Bhandari & Yacouba Moumouni & Aklesso Y. G. Egbendewe & Windmanagda Sawadogo & Saidou Madougou, 2022. "Solar Energy Powered Decentralized Smart-Grid for Sustainable Energy Supply in Low-Income Countries: Analysis Considering Climate Change Influences in Togo," Energies, MDPI, vol. 15(24), pages 1-24, December.
    18. Jung-A Yang & Sooyoul Kim & Sangyoung Son & Nobuhito Mori & Hajime Mase, 2020. "Assessment of uncertainties in projecting future changes to extreme storm surge height depending on future SST and greenhouse gas concentration scenarios," Climatic Change, Springer, vol. 162(2), pages 425-442, September.
    19. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    20. Fahad Saeed & Mansour Almazroui & Nazrul Islam & Mariam Saleh Khan, 2017. "Intensification of future heat waves in Pakistan: a study using CORDEX regional climate models ensemble," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1635-1647, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:146:y:2018:i:3:d:10.1007_s10584-016-1616-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.