IDEAS home Printed from https://ideas.repec.org/p/ags/usdami/352112.html
   My bibliography  Save this paper

Agriculture and Rural Communities

Author

Listed:
  • Gowda, Prasanna
  • Steiner, Jean L.
  • Olson, Carolyn
  • Boggess, Mark
  • Farrigan, Tracey
  • Grusak, Michael A.

Abstract

Key Messages: 1: Reduced Agricultural Productivity: Food and forage production will decline in regions experiencing increased frequency and duration of drought. Shifting precipitation patterns, when associated with high temperatures, will intensify wildfires that reduce forage on rangelands, accelerate the depletion of water supplies for irrigation, and expand the distribution and incidence of pests and diseases for crops and livestock. Modern breeding approaches and the use of novel genes from crop wild. 2: Degradation of Soil and Water Resources: The degradation of critical soil and water resources will expand as extreme precipitation events increase across our agricultural landscape. Sustainable crop production is threatened by excessive runoff, leaching, and flooding, which results in soil erosion, degraded water quality in lakes and streams, and damage to rural community infrastructure. Management practices to restore soil structure and the hydrologic function of landscapes are essential for improving resilience to these challenges. 3: Health Challenges to Rural Populations and Livestock Agriculture, Food Systems, and Rural Communities: Challenges to human and livestock health are growing due to the increased frequency and intensity of high temperature extremes. Extreme heat conditions contribute to heat exhaustion, heatstroke, and heart attacks in humans. Heat stress in livestock results in large economic losses for producers. Expanded health services in rural areas, heat-tolerant livestock, and improved design of confined animal housing are all important advances to minimize these challenges. 4: Vulnerability and Adaptive Capacity of Rural Communities: Residents in rural communities often have limited capacity to respond to climate change impacts, due to poverty and limitations in community resources. Communication, transportation, water, and sanitary infrastructure are vulnerable to disruption from climate stressors. Achieving social resilience to these challenges would require increases in local capacity to make adaptive improvements in shared community resources.

Suggested Citation

  • Gowda, Prasanna & Steiner, Jean L. & Olson, Carolyn & Boggess, Mark & Farrigan, Tracey & Grusak, Michael A., 2018. "Agriculture and Rural Communities," USDA Miscellaneous 352112, United States Department of Agriculture.
  • Handle: RePEc:ags:usdami:352112
    DOI: 10.22004/ag.econ.352112
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/352112/files/NCA4_Ch10_Agriculture_Full.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.352112?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Flavio Lehner & Clara Deser & Benjamin M. Sanderson, 2018. "Future risk of record-breaking summer temperatures and its mitigation," Climatic Change, Springer, vol. 146(3), pages 363-375, February.
    2. Mark C. Eisler & Michael R. F. Lee & John F. Tarlton & Graeme B. Martin & John Beddington & Jennifer A. J. Dungait & Henry Greathead & Jianxin Liu & Stephen Mathew & Helen Miller & Tom Misselbrook & P, 2014. "Agriculture: Steps to sustainable livestock," Nature, Nature, vol. 507(7490), pages 32-34, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, L. & Harris, P. & Misselbrook, T.H. & Lee, M.R.F., 2022. "Simulating grazing beef and sheep systems," Agricultural Systems, Elsevier, vol. 195(C).
    2. Germer, Leah A. & van Middelaar, Corina E. & Oosting, Simon J. & Gerber, Pierre J., 2023. "When and where are livestock climate-smart? A spatial-temporal framework for comparing the climate change and food security synergies and tradeoffs of Sub-Saharan African livestock systems," Agricultural Systems, Elsevier, vol. 210(C).
    3. zu Ermgassen, Erasmus K.H.J. & Phalan, Ben & Green, Rhys E. & Balmford, Andrew, 2016. "Reducing the land use of EU pork production: where there’s swill, there’s a way," Food Policy, Elsevier, vol. 58(C), pages 35-48.
    4. Shoupeng Zhu & Fei Ge & Yi Fan & Ling Zhang & Frank Sielmann & Klaus Fraedrich & Xiefei Zhi, 2020. "Conspicuous temperature extremes over Southeast Asia: seasonal variations under 1.5 °C and 2 °C global warming," Climatic Change, Springer, vol. 160(3), pages 343-360, June.
    5. Miriam Baumgartner & Sandra Kuhnke & Kurt-Jürgen Hülsbergen & Michael H. Erhard & Margit H. Zeitler-Feicht, 2021. "Improving Horse Welfare and Environmental Sustainability in Horse Husbandry: Linkage between Turnout and Nitrogen Surplus," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    6. Stutz, Adrian & Schell, Sabrina & Hack, Andreas, 2022. "In family firms we trust – Experimental evidence on the credibility of sustainability reporting: A replication study with extension," Journal of Family Business Strategy, Elsevier, vol. 13(4).
    7. Chengji Han & Guogang Wang & Hongbo Yang, 2022. "Study on the Coupling System of Grain-Grass-Livestock of Herbivorous Animal Husbandry in Agricultural Areas: A Case Study of Najitun Farm of Hulunbuir Agricultural Reclamation in China," Land, MDPI, vol. 11(5), pages 1-26, May.
    8. Massimo Canali & Pegah Amani & Lusine Aramyan & Manuela Gheoldus & Graham Moates & Karin Östergren & Kirsi Silvennoinen & Keith Waldron & Matteo Vittuari, 2016. "Food Waste Drivers in Europe, from Identification to Possible Interventions," Sustainability, MDPI, vol. 9(1), pages 1-33, December.
    9. Richard Twine, 2021. "Emissions from Animal Agriculture—16.5% Is the New Minimum Figure," Sustainability, MDPI, vol. 13(11), pages 1-8, June.
    10. Andrew S. Cooke & Honest Machekano & Lovemore C. Gwiriri & Jonathan H. I. Tinsley & Gleise M. Silva & Casper Nyamukondiwa & Andrew Safalaoh & Eric R. Morgan & Michael R. F. Lee, 2025. "The nutritional feed gap: Seasonal variations in ruminant nutrition and knowledge gaps in relation to food security in Southern Africa," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 17(1), pages 73-100, February.
    11. Mishra, Pulak & Das, Pinaki & Ghosh, Soumya Kanti & Dandapat, Akash & Dasgupta, Soumita, 2024. "Agriculture-livestock-forestry nexus and household income diversification: Experiences from selected villages of West Bengal, India," Agricultural Systems, Elsevier, vol. 217(C).
    12. Mollie Chapman & Susanna Klassen & Maayan Kreitzman & Adrian Semmelink & Kelly Sharp & Gerald Singh & Kai M. A. Chan, 2017. "5 Key Challenges and Solutions for Governing Complex Adaptive (Food) Systems," Sustainability, MDPI, vol. 9(9), pages 1-30, September.
    13. Martin C. Parlasca & Matin Qaim, 2022. "Meat Consumption and Sustainability," Annual Review of Resource Economics, Annual Reviews, vol. 14(1), pages 17-41, October.
    14. Virginia Anne Kowal & Julian Ahlborn & Chantsallkham Jamsranjav & Otgonsuren Avirmed & Rebecca Chaplin-Kramer, 2021. "Modeling Integrated Impacts of Climate Change and Grazing on Mongolia’s Rangelands," Land, MDPI, vol. 10(4), pages 1-28, April.
    15. Angelos E. Angelidis & Graham A. McAuliffe & Taro Takahashi & Les Crompton & Tianhai Yan & Christopher K. Reynolds & Sokratis Stergiadis & Tom Misselbrook, 2022. "The Impact of Using Novel Equations to Predict Nitrogen Excretion and Associated Emissions from Pasture-Based Beef Production Systems," Sustainability, MDPI, vol. 14(12), pages 1-12, June.
    16. Tichenor, Nicole E. & van Zanten, Hannah H.E. & de Boer, Imke J.M. & Peters, Christian J. & McCarthy, Ashley C. & Griffin, Timothy S., 2017. "Land use efficiency of beef systems in the Northeastern USA from a food supply perspective," Agricultural Systems, Elsevier, vol. 156(C), pages 34-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:usdami:352112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: http://www.usda.gov .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.