IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v210y2023ics0308521x23001221.html
   My bibliography  Save this article

When and where are livestock climate-smart? A spatial-temporal framework for comparing the climate change and food security synergies and tradeoffs of Sub-Saharan African livestock systems

Author

Listed:
  • Germer, Leah A.
  • van Middelaar, Corina E.
  • Oosting, Simon J.
  • Gerber, Pierre J.

Abstract

The livestock sector in Sub-Saharan Africa (SSA) is under increasing pressure to define its role in jointly addressing food security and climate change. Climate-smart agriculture (CSA) has been widely leveraged as an approach to achieving both food security and climate change outcomes through suites of interventions that maximize synergies and reduce tradeoffs among three pillars: productivity, climate change resilience, and climate change mitigation. However, operationalization of the CSA approach in the livestock sector is hindered by a lack of clarity around what the pillars mean for livestock systems, given their fundamental attributes compared to crops and the spatial and temporal dimensions of these attributes. A conceptual framework is also lacking for assessing and comparing the potential CSA synergies and tradeoffs that different livestock systems and interventions may generate.

Suggested Citation

  • Germer, Leah A. & van Middelaar, Corina E. & Oosting, Simon J. & Gerber, Pierre J., 2023. "When and where are livestock climate-smart? A spatial-temporal framework for comparing the climate change and food security synergies and tradeoffs of Sub-Saharan African livestock systems," Agricultural Systems, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:agisys:v:210:y:2023:i:c:s0308521x23001221
    DOI: 10.1016/j.agsy.2023.103717
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X23001221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2023.103717?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philip K. Thornton & Todd Rosenstock & Wiebke Förch & Christine Lamanna & Patrick Bell & Ben Henderson & Mario Herrero, 2018. "A Qualitative Evaluation of CSA Options in Mixed Crop-Livestock Systems in Developing Countries," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 385-423, Springer.
    2. Irina Dvorak & Raffaello Cervigni & John Allen Rogers, 2013. "Assessing Low-Carbon Development in Nigeria : An Analysis of Four Sectors," World Bank Publications - Books, The World Bank Group, number 15797, August.
    3. Shikuku, Kelvin M. & Valdivia, Roberto O. & Paul, Birthe K. & Mwongera, Caroline & Winowiecki, Leigh & Läderach, Peter & Herrero, Mario & Silvestri, Silvia, 2017. "Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach," Agricultural Systems, Elsevier, vol. 151(C), pages 204-216.
    4. Nancy McCarthy & Leslie Lipper & David Zilberman, 2018. "Economics of Climate Smart Agriculture: An Overview," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 31-47, Springer.
    5. Leslie Lipper & David Zilberman, 2018. "A Short History of the Evolution of the Climate Smart Agriculture Approach and Its Links to Climate Change and Sustainable Agriculture Debates," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 13-30, Springer.
    6. Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), 2018. "Climate Smart Agriculture," Natural Resource Management and Policy, Springer, number 978-3-319-61194-5, June.
    7. Mark C. Eisler & Michael R. F. Lee & John F. Tarlton & Graeme B. Martin & John Beddington & Jennifer A. J. Dungait & Henry Greathead & Jianxin Liu & Stephen Mathew & Helen Miller & Tom Misselbrook & P, 2014. "Agriculture: Steps to sustainable livestock," Nature, Nature, vol. 507(7490), pages 32-34, March.
    8. Joanna B. Upton & Jennifer Denno Cissé & Christopher B. Barrett, 2016. "Food security as resilience: reconciling definition and measurement," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 135-147, November.
    9. Alary, Véronique & Lasseur, Jacques & Frija, Aymen & Gautier, Denis, 2022. "Assessing the sustainability of livestock socio-ecosystems in the drylands through a set of indicators," Agricultural Systems, Elsevier, vol. 198(C).
    10. Notenbaert, An & Pfeifer, Catherine & Silvestri, Silvia & Herrero, Mario, 2017. "Targeting, out-scaling and prioritising climate-smart interventions in agricultural systems: Lessons from applying a generic framework to the livestock sector in sub-Saharan Africa," Agricultural Systems, Elsevier, vol. 151(C), pages 153-162.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Obuobi, Bright & Zhang, Yifeng, 2024. "Green investment and its transformative impact on energy use in agriculture: A holistic approach towards carbon dioxide emissions," Energy, Elsevier, vol. 309(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Collins-Sowah, Peron A., 2018. "Theoretical conception of climate-smart agriculture," Working Papers of Agricultural Policy WP2018-02, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    2. Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    3. Rodríguez-Barillas, María & Klerkx, Laurens & Poortvliet, P. Marijn, 2024. "What determines the acceptance of Climate Smart Technologies? The influence of farmers' behavioral drivers in connection with the policy environment," Agricultural Systems, Elsevier, vol. 213(C).
    4. Arenas-Calle, Laura N. & Ramirez-Villegas, Julian & Whitfield, Stephen & Challinor, Andrew J., 2021. "Design of a Soil-based Climate-Smartness Index (SCSI) using the trend and variability of yields and soil organic carbon," Agricultural Systems, Elsevier, vol. 190(C).
    5. Thornton, Philip K. & Whitbread, Anthony & Baedeker, Tobias & Cairns, Jill & Claessens, Lieven & Baethgen, Walter & Bunn, Christian & Friedmann, Michael & Giller, Ken E. & Herrero, Mario & Howden, Mar, 2018. "A framework for priority-setting in climate smart agriculture research," Agricultural Systems, Elsevier, vol. 167(C), pages 161-175.
    6. Victor O. Abegunde & Ajuruchukwu Obi, 2022. "The Role and Perspective of Climate Smart Agriculture in Africa: A Scientific Review," Sustainability, MDPI, vol. 14(4), pages 1-15, February.
    7. Roberto Villalba & Garima Joshi & Thomas Daum & Terese E. Venus, 2024. "Financing Climate-Smart Agriculture: a case study from the Indo-Gangetic Plains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-25, June.
    8. Theodrose Sisay & Kindie Tesfaye & Mengistu Ketema & Nigussie Dechassa & Mezegebu Getnet, 2023. "Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    9. Barooah, Prapti & Alvi, Muzna & Ringler, Claudia & Pathak, Vishal, 2023. "Gender, agriculture policies, and climate-smart agriculture in India," Agricultural Systems, Elsevier, vol. 212(C).
    10. Daniel Kangogo & Domenico Dentoni & Jos Bijman, 2020. "Determinants of Farm Resilience to Climate Change: The Role of Farmer Entrepreneurship and Value Chain Collaborations," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    11. Getnet Zeleke & Menberu Teshome & Linger Ayele, 2024. "Determinants of Smallholder Farmers’ Decisions to Use Multiple Climate-Smart Agricultural Technologies in North Wello Zone, Northern Ethiopia," Sustainability, MDPI, vol. 16(11), pages 1-26, May.
    12. Viviana Ferrario, 2021. "Learning from Agricultural Heritage? Lessons of Sustainability from Italian “Coltura Promiscua”," Sustainability, MDPI, vol. 13(16), pages 1-13, August.
    13. Payam Memarbashi & Gholamreza Mojarradi & Marzieh Keshavarz, 2022. "Climate-Smart Agriculture in Iran: Strategies, Constraints and Drivers," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    14. Stan Selbonne & Loïc Guindé & François Causeret & Pierre Chopin & Jorge Sierra & Régis Tournebize & Jean-Marc Blazy, 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    15. Panhwar Ghulam Mustafa & Shangao Wang & Gershom Endelani Mwalupaso & Yi Yu & Zhou Li, 2024. "The effect of climate-smart agriculture on productivity and cost efficiency: Insights from smallholder wheat producers in Pakistan," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 70(7), pages 334-348.
    16. Paresh B. Shirsath & Pramod K. Aggarwal, 2021. "Trade-Offs between Agricultural Production, GHG Emissions and Income in a Changing Climate, Technology, and Food Demand Scenario," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
    17. Dunnett, A. & Shirsath, P.B. & Aggarwal, P.K. & Thornton, P. & Joshi, P.K. & Pal, B.D. & Khatri-Chhetri, A. & Ghosh, J., 2018. "Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions," Ecological Modelling, Elsevier, vol. 381(C), pages 23-35.
    18. Das, Usha & Ansari, M.A. & Ghosh, Souvik, 2022. "Effectiveness and upscaling potential of climate smart agriculture interventions: Farmers' participatory prioritization and livelihood indicators as its determinants," Agricultural Systems, Elsevier, vol. 203(C).
    19. Daniel El Chami & André Daccache & Maroun El Moujabber, 2020. "How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review," Sustainability, MDPI, vol. 12(8), pages 1-23, April.
    20. Victor O. Abegunde & Melusi Sibanda & Ajuruchukwu Obi, 2020. "Mainstreaming Climate-Smart Agriculture in Small-Scale Farming Systems: A Holistic Nonparametric Applicability Assessment in South Africa," Agriculture, MDPI, vol. 10(3), pages 1-18, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:210:y:2023:i:c:s0308521x23001221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.