IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3190-d516946.html
   My bibliography  Save this article

Trade-Offs between Agricultural Production, GHG Emissions and Income in a Changing Climate, Technology, and Food Demand Scenario

Author

Listed:
  • Paresh B. Shirsath

    (CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA), International Maize and Wheat Improvement Centre (CIMMYT), New Delhi 110012, India)

  • Pramod K. Aggarwal

    (CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Borlaug Institute for South Asia (BISA), International Maize and Wheat Improvement Centre (CIMMYT), New Delhi 110012, India)

Abstract

Climate-smart agriculture targets integrated adaptation and mitigation strategies for delivering food security and greenhouse gas emissions reduction. This study outlines a methodology to identify the trade-offs between food production, emissions, and income under technology and food demand-shift scenario and climate change. The methodology uses Climate Smart Agricultural Prioritization (CSAP) toolkit a multi-objective land-use allocation model, and detailed databases, characterizing the agricultural production processes at the land-unit scale. A case study has also been demonstrated for Bihar, a state in India. The quantification of trade-offs demonstrates that under different technology growth pathways alone the food self-sufficiency for Bihar cannot be achieved whilst the reduction in emission intensity targets are achievable up to 2040. However, both food self-sufficiency and reduction in emission intensity can be achieved if we relax constraints on dietary demand and focus on kilo-calories maximization targets. The district-level analysis shows that food self-sufficiency and reduction in emission intensity targets can be achieved at a local scale through efficient crop-technology portfolios.

Suggested Citation

  • Paresh B. Shirsath & Pramod K. Aggarwal, 2021. "Trade-Offs between Agricultural Production, GHG Emissions and Income in a Changing Climate, Technology, and Food Demand Scenario," Sustainability, MDPI, vol. 13(6), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3190-:d:516946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3190/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3190/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dunnett, A. & Shirsath, P.B. & Aggarwal, P.K. & Thornton, P. & Joshi, P.K. & Pal, B.D. & Khatri-Chhetri, A. & Ghosh, J., 2018. "Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions," Ecological Modelling, Elsevier, vol. 381(C), pages 23-35.
    2. Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), 2018. "Climate Smart Agriculture," Natural Resource Management and Policy, Springer, number 978-3-319-61194-5, March.
    3. Nancy McCarthy & Leslie Lipper & David Zilberman, 2018. "Economics of Climate Smart Agriculture: An Overview," Natural Resource Management and Policy, in: Leslie Lipper & Nancy McCarthy & David Zilberman & Solomon Asfaw & Giacomo Branca (ed.), Climate Smart Agriculture, pages 31-47, Springer.
    4. Brandt, Patric & Kvakić, Marko & Butterbach-Bahl, Klaus & Rufino, Mariana C., 2017. "How to target climate-smart agriculture? Concept and application of the consensus-driven decision support framework “targetCSA”," Agricultural Systems, Elsevier, vol. 151(C), pages 234-245.
    5. Shirsath, Paresh B. & Aggarwal, P.K. & Thornton, P.K. & Dunnett, A., 2017. "Prioritizing climate-smart agricultural land use options at a regional scale," Agricultural Systems, Elsevier, vol. 151(C), pages 174-183.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thornton, Philip K. & Whitbread, Anthony & Baedeker, Tobias & Cairns, Jill & Claessens, Lieven & Baethgen, Walter & Bunn, Christian & Friedmann, Michael & Giller, Ken E. & Herrero, Mario & Howden, Mar, 2018. "A framework for priority-setting in climate smart agriculture research," Agricultural Systems, Elsevier, vol. 167(C), pages 161-175.
    2. Dunnett, A. & Shirsath, P.B. & Aggarwal, P.K. & Thornton, P. & Joshi, P.K. & Pal, B.D. & Khatri-Chhetri, A. & Ghosh, J., 2018. "Multi-objective land use allocation modelling for prioritizing climate-smart agricultural interventions," Ecological Modelling, Elsevier, vol. 381(C), pages 23-35.
    3. Daniel Kangogo & Domenico Dentoni & Jos Bijman, 2020. "Determinants of Farm Resilience to Climate Change: The Role of Farmer Entrepreneurship and Value Chain Collaborations," Sustainability, MDPI, vol. 12(3), pages 1-15, January.
    4. Collins-Sowah, Peron A., 2018. "Theoretical conception of climate-smart agriculture," Working Papers of Agricultural Policy WP2018-02, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    5. Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    6. Das, Usha & Ansari, M.A. & Ghosh, Souvik, 2022. "Effectiveness and upscaling potential of climate smart agriculture interventions: Farmers' participatory prioritization and livelihood indicators as its determinants," Agricultural Systems, Elsevier, vol. 203(C).
    7. Maleki, Tahereh & Koohestani, Hossein & Keshavarz, Marzieh, 2022. "Can climate-smart agriculture mitigate the Urmia Lake tragedy in its eastern basin?," Agricultural Water Management, Elsevier, vol. 260(C).
    8. Arenas-Calle, Laura N. & Ramirez-Villegas, Julian & Whitfield, Stephen & Challinor, Andrew J., 2021. "Design of a Soil-based Climate-Smartness Index (SCSI) using the trend and variability of yields and soil organic carbon," Agricultural Systems, Elsevier, vol. 190(C).
    9. Awa Sanou & John M. Kerr & Jennifer Hodbod & Lenis Saweda O. Liverpool-Tasie, 2022. "Perception and adaptation to higher temperatures among poultry farmers in Nigeria," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13917-13936, December.
    10. De los Santos-Montero, Luis A. & Bravo-Ureta, Boris E. & von Cramon-Taubadel, Stephan & Hasiner, Eva, 2020. "The performance of natural resource management interventions in agriculture: Evidence from alternative meta-regression analyses," Ecological Economics, Elsevier, vol. 171(C).
    11. Quevedo Cascante, Mónica & Acosta García, Nicolás & Fold, Niels, 2022. "The role of external forces in the adoption of aquaculture innovations: An ex-ante case study of fish farming in Colombia's southern Amazonian region," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    12. Roberto Villalba & Garima Joshi & Thomas Daum & Terese E. Venus, 2024. "Financing Climate-Smart Agriculture: a case study from the Indo-Gangetic Plains," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-25, June.
    13. Tomich, Thomas P. & Lidder, Preetmoninder & Coley, Mariah & Gollin, Douglas & Meinzen-Dick, Ruth & Webb, Patrick & Carberry, Peter, 2019. "Food and agricultural innovation pathways for prosperity," Agricultural Systems, Elsevier, vol. 172(C), pages 1-15.
    14. Iyappan, Karunya & Babu, Suresh Chandra, 2018. "Building resilient food systems: An analytical review," IFPRI discussion papers 1758, International Food Policy Research Institute (IFPRI).
    15. Pietro De Marinis & Paolo Stefano Ferrario & Guido Sali & Giulio Senes, 2022. "The Rapid and Participatory Assessment of Land Suitability in Development Cooperation," Sustainability, MDPI, vol. 14(20), pages 1-24, October.
    16. Theodrose Sisay & Kindie Tesfaye & Mengistu Ketema & Nigussie Dechassa & Mezegebu Getnet, 2023. "Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia," Sustainability, MDPI, vol. 15(4), pages 1-12, February.
    17. Adelhart Toorop, Roos & Ceccarelli, Viviana & Bijarniya, Deepak & Jat, Mangi Lal & Jat, Raj Kumar & Lopez-Ridaura, Santiago & Groot, Jeroen C.J., 2020. "Using a positive deviance approach to inform farming systems redesign: A case study from Bihar, India," Agricultural Systems, Elsevier, vol. 185(C).
    18. Aslihan Arslan, Romina Cavatassi, Marup Hossain, 2022. "Research Series 69: Structural and rural transformation and food systems: a quantitative synthesis for LMICs," IFAD Research Series 320720, International Fund for Agricultural Development (IFAD).
    19. Hemant G. Tripathi & Harriet E. Smith & Steven M. Sait & Susannah M. Sallu & Stephen Whitfield & Astrid Jankielsohn & William E. Kunin & Ndumiso Mazibuko & Bonani Nyhodo, 2021. "Impacts of COVID-19 on Diverse Farm Systems in Tanzania and South Africa," Sustainability, MDPI, vol. 13(17), pages 1-16, September.
    20. Seungki Lee & Yongjie Ji & GianCarlo Moschini, 2021. "Agricultural Innovation and Adaptation to Climate Change: Insights from Genetically Engineered Maize," Center for Agricultural and Rural Development (CARD) Publications 21-wp616, Center for Agricultural and Rural Development (CARD) at Iowa State University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3190-:d:516946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.