IDEAS home Printed from
   My bibliography  Save this article

Assessing debris flow activity in a changing climate


  • Thea Turkington

    () (University of Twente)

  • Alexandre Remaître

    (University of Strasbourg)

  • Janneke Ettema

    (University of Twente)

  • Haydar Hussin

    (University of Twente)

  • Cees Westen

    (University of Twente)


Abstract Future trends in debris flow activity are constructed based on bias-corrected climate change projections using two meteorological proxies: daily precipitation and Convective Available Potential Energy (CAPE) combined with specific humidity for two Alpine areas. Along with a comparison between proxies, future number of days with debris flows are analyzed with respect to different regional and global climate models, Representative Concentration Pathways (RCPs), and area for quantile mapping. Two different base periods are also analyzed, as debris flows were observed on only 6 (17) days between 1950 and 1979, yet on 18 (49) days between 1980 and 2009 for Fella River, NE Italy (Barcelonnette, SE French Alps). For both areas, future climate projections vary between no change up to an increase of 6.0 % per decade in days with debris flow occurrences towards the end of 21st century. In Barcelonnette, the base period and proxy have a bigger impact on the future number of debris flow days than the climate model or RCP used. In Fella River, the base period, RCP, and proxy used define the future range. Therefore the selection of proxy, base period and downscaling technique should be carefully considered for future climate change impact studies concerning debris flow activity and associated fast-moving landslides.

Suggested Citation

  • Thea Turkington & Alexandre Remaître & Janneke Ettema & Haydar Hussin & Cees Westen, 2016. "Assessing debris flow activity in a changing climate," Climatic Change, Springer, vol. 137(1), pages 293-305, July.
  • Handle: RePEc:spr:climat:v:137:y:2016:i:1:d:10.1007_s10584-016-1657-6
    DOI: 10.1007/s10584-016-1657-6

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Casey Dowling & Paul Santi, 2014. "Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 203-227, March.
    2. Caterina Melchiorre & Paolo Frattini, 2012. "Modelling probability of rainfall-induced shallow landslides in a changing climate, Otta, Central Norway," Climatic Change, Springer, vol. 113(2), pages 413-436, July.
    3. Matthias Themeßl & Andreas Gobiet & Georg Heinrich, 2012. "Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal," Climatic Change, Springer, vol. 112(2), pages 449-468, May.
    4. Roberta Paranunzio & Francesco Laio & Guido Nigrelli & Marta Chiarle, 2015. "A method to reveal climatic variables triggering slope failures at high elevation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1039-1061, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:spr:nathaz:v:93:y:2018:i:2:d:10.1007_s11069-018-3328-6 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:137:y:2016:i:1:d:10.1007_s10584-016-1657-6. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.