IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i2d10.1007_s11069-023-06279-1.html
   My bibliography  Save this article

A precipitation downscaling framework for regional warning of debris flows in mountainous areas

Author

Listed:
  • Chenchen Qiu

    (University of Warwick)

  • Lijun Su

    (Chinese Academy of Sciences (CAS))

  • Xueyu Geng

    (University of Warwick)

Abstract

A timely warning system for debris-flow mitigation in mountainous areas is vital to decrease casualties. However, the lack of rainfall monitoring stations and coarse resolution of satellite-based observations pose challenges for developing such a debris-flow warning model in data-scarce areas. To offer an effective method for the generation of precipitation with fine resolution, a machine learning (ML)-based approach is proposed to establish the relationship between precipitation and regional environmental factors (REVs), including normalized difference vegetation index (NDVI), digital elevation model (DEM), geolocations (longitude and latitude) and land surface temperature (LST). This approach enables the downscaling of 3B42 TRMM precipitation data, providing fine temporal and spatial resolution precipitation data. We use PERSIANN-Cloud Classification System-Climate Data Record (PERSIANN-CCS-CDR) data to calibrate the downscaled results using geographical differential analysis (GDA) before applying the calibrated results in a case study in the Gyirong Zangbo Basin. After that, we calculate the rainfall thresholds of effective antecedent rainfall (Pe)—intraday rainfall (Po) based on the calibrated precipitation and integrate these thresholds into a susceptibility map to develop a debris-flow warning model. The results show that (1) this ML-based approach can effectively achieve the downscaling of TRMM data; (2) calibrated TRMM data outperforms the original TRMM and downscaled TRMM data, reducing deviations by 55% and 57%; (3) the integrated model, incorporating rainfall thresholds, outperforms a single susceptibility map in providing debris-flow warnings. The developed warning model can offer dynamic warnings for debris flows that may have been missed by the original warning system at a regional scale.

Suggested Citation

  • Chenchen Qiu & Lijun Su & Xueyu Geng, 2024. "A precipitation downscaling framework for regional warning of debris flows in mountainous areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1979-2004, January.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06279-1
    DOI: 10.1007/s11069-023-06279-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06279-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06279-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Casey Dowling & Paul Santi, 2014. "Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 203-227, March.
    2. Huayong Ni & Wanmo Zheng & Zongliang Li & Renji Ba, 2010. "Recent catastrophic debris flows in Luding county, SW China: geological hazards, rainfall analysis and dynamic characteristics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 55(2), pages 523-542, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengyao Liu & Jing Huang & Yonghong Li & Xiaokang Liu & Fei Qiang & Yiping He, 2025. "A Bibliometric Analysis of Geological Hazards Monitoring Technologies," Sustainability, MDPI, vol. 17(3), pages 1-15, January.
    2. Wistuba, Małgorzata & Malik, Ireneusz & Tie, Yongbo & Gorczyca, Elżbieta & Zhang, Xianzheng & Wang, Jiazhu & Lu, Tuo, 2024. "Indicating landslide hazard from tree rings – Ecosystem service provided by an alder forest in the hengduan Mts, Sichuan, China," Ecosystem Services, Elsevier, vol. 67(C).
    3. Ming Chen & Yuting Luo & Chuan Tang & Ning Li, 2024. "Quantitative assessment of expected direct economic losses of buildings for debris flows in multiple rainfall intensity scenarios in Yangling Gully, Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2993-3014, February.
    4. Aaron Opdyke & Khadija Fatima, 2024. "Comparing the suitability of global gridded population datasets for local landslide risk assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2415-2432, February.
    5. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    6. H. Ni & W. Zheng & Y. Tie & P. Su & Y. Tang & R. Xu & D. Wang & X. Chen, 2012. "Formation and characteristics of post-earthquake debris flow: a case study from Wenjia gully in Mianzhu, Sichuan, SW China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 317-335, March.
    7. Pukar Amatya & Corey Scheip & Aline Déprez & Jean-Philippe Malet & Stephen L. Slaughter & Alexander L. Handwerger & Robert Emberson & Dalia Kirschbaum & Julien Jean-Baptiste & Mong-Han Huang & Marin K, 2023. "Learnings from rapid response efforts to remotely detect landslides triggered by the August 2021 Nippes earthquake and Tropical Storm Grace in Haiti," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2337-2375, September.
    8. Rakesh Bhambri & Manish Mehta & D. Dobhal & Anil Gupta & Bhanu Pratap & Kapil Kesarwani & Akshaya Verma, 2016. "Devastation in the Kedarnath (Mandakini) Valley, Garhwal Himalaya, during 16–17 June 2013: a remote sensing and ground-based assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1801-1822, February.
    9. Olga Petrucci & Paola Salvati & Luigi Aceto & Cinzia Bianchi & Angela Aurora Pasqua & Mauro Rossi & Fausto Guzzetti, 2017. "The Vulnerability of People to Damaging Hydrogeological Events in the Calabria Region (Southern Italy)," IJERPH, MDPI, vol. 15(1), pages 1-28, December.
    10. Yuzheng Wang & Lei Nie & Min Zhang & Hong Wang & Yan Xu & Tianyu Zuo, 2020. "Assessment of Debris Flow Risk Factors Based on Meta-Analysis—Cases Study of Northwest and Southwest China," Sustainability, MDPI, vol. 12(17), pages 1-24, August.
    11. Alexander N. Gorr & Luke A. McGuire & Rebecca Beers & Olivia J. Hoch, 2023. "Triggering conditions, runout, and downstream impacts of debris flows following the 2021 Flag Fire, Arizona, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2473-2504, July.
    12. Zheng Zhong & Ningsheng Chen & Guisheng Hu & Zheng Han & Huayong Ni, 2021. "Aggravation of debris flow disaster by extreme climate and engineering: a case study of the Tongzilin Gully, Southwestern Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(1), pages 237-253, October.
    13. H. Chen & L. Zhang & D. Chang & S. Zhang, 2012. "Mechanisms and runout characteristics of the rainfall-triggered debris flow in Xiaojiagou in Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1037-1057, July.
    14. Rakesh Bhambri & Manish Mehta & D. P. Dobhal & Anil Kumar Gupta & Bhanu Pratap & Kapil Kesarwani & Akshaya Verma, 2016. "Devastation in the Kedarnath (Mandakini) Valley, Garhwal Himalaya, during 16–17 June 2013: a remote sensing and ground-based assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1801-1822, February.
    15. Bum-Hee Jo & Taek-Kyu Chung & Inhyun Kim, 2025. "Assessment of Debris Flow Triggering Rainfall Using Parameter-Elevation Relationships on an Independent Slope Model," Sustainability, MDPI, vol. 17(4), pages 1-16, February.
    16. Claudia Vanessa Santos Corrêa & Fábio Augusto Gomes Vieira Reis & Lucília Carmo Giordano & Victor Carvalho Cabral & Vinícius Queiroz Veloso & Fernando Mazo D’Affonseca, 2024. "Numerical modeling of a high magnitude debris-flow event occurred in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 13077-13107, November.
    17. Han-Chung Yang & Cheng-Wu Chen, 2012. "Potential hazard analysis from the viewpoint of flow measurement in large open-channel junctions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 803-813, March.
    18. Zheng Wang & Ningsheng Chen & Guisheng Hu & Yong Zhang & Genxu Wang & Zheng Han, 2023. "Hydrometeorological triggering of periglacial debris flows using a Bayesian approach: a case study of the Hailuogou Gully region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2871-2888, April.
    19. Chen Cao & Peihua Xu & Jianping Chen & Lianjing Zheng & Cencen Niu, 2016. "Hazard Assessment of Debris-Flow along the Baicha River in Heshigten Banner, Inner Mongolia, China," IJERPH, MDPI, vol. 14(1), pages 1-19, December.
    20. Zhiheng Wang & Dongchuan Wang & Qiaozhen Guo & Daikun Wang, 2020. "Regional landslide hazard assessment through integrating susceptibility index and rainfall process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2153-2173, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:2:d:10.1007_s11069-023-06279-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.