IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i13d10.1007_s11069-025-07402-0.html
   My bibliography  Save this article

Geomorphic thresholds for cascading hazards of debris flows and natural dam formation caused by large landslides

Author

Listed:
  • Hefryan Sukma Kharismalatri

    (Tokyo University of Agriculture and Technology)

  • Takashi Gomi

    (Nagoya University)

  • Roy C. Sidle

    (University of Central Asia)

Abstract

This study investigates geomorphic thresholds that control cascading hazards initiated by large landslides (volume > 105 m3), particularly their potential to generate natural dams or transform into debris flows. These two outcomes represent primary pathways in which large landslide debris interacts with channel networks, triggering downstream or upstream hazards. Using a global dataset of 188 large landslides, we analyzed key geomorphic parameters including inflow angle (entry angle of landslide into channel), local relief, and channel gradient. Our findings reveal distinct geomorphic thresholds: natural dams tend to form when landslides enter channels at inflow angles > 60° and encounter channel gradients 10°. Power-law scaling exponents between landslide area and volume were lower for debris flows than for natural dam-forming landslides, reflecting differences in failure depth and mobility. While this study focuses on natural dam formation and debris flows as dominant hazard sequences, other outcomes such as channel infilling with sediment or partial blockage may occur depending on local topography and hydrological conditions. To avoid conflating past observations with future projections, we frame our results as empirical thresholds that help assess the potential for cascading impacts. These insights are particularly relevant for mountain communities in tectonically active regions where limited infrastructure, isolation, and steep terrain amplify hazard exposure. By identifying simple geomorphic thresholds associated with hazard transitions, this study provides a framework for improving risk assessment, early warning strategies, and land use planning to enhance hazard mitigation strategies and support evidence-based land use management.

Suggested Citation

  • Hefryan Sukma Kharismalatri & Takashi Gomi & Roy C. Sidle, 2025. "Geomorphic thresholds for cascading hazards of debris flows and natural dam formation caused by large landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(13), pages 15537-15552, July.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:13:d:10.1007_s11069-025-07402-0
    DOI: 10.1007/s11069-025-07402-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-025-07402-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-025-07402-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Casey Dowling & Paul Santi, 2014. "Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 203-227, March.
    2. Dieter Rickenmann, 1999. "Empirical Relationships for Debris Flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 19(1), pages 47-77, January.
    3. Sanjib Sharma & Rocky Talchabhadel & Santosh Nepal & Ganesh R. Ghimire & Biplob Rakhal & Jeeban Panthi & Basanta R. Adhikari & Soni M. Pradhanang & Shreedhar Maskey & Saurav Kumar, 2023. "Increasing risk of cascading hazards in the central Himalayas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(2), pages 1117-1126, November.
    4. Laurie Jayne Kurilla & Giandomenico Fubelli, 2022. "Global debris flow susceptibility based on a comparative analysis of a single global model versus a continent-by-continent approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 113(1), pages 527-546, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander N. Gorr & Luke A. McGuire & Rebecca Beers & Olivia J. Hoch, 2023. "Triggering conditions, runout, and downstream impacts of debris flows following the 2021 Flag Fire, Arizona, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2473-2504, July.
    2. Claudia Vanessa Santos Corrêa & Fábio Augusto Gomes Vieira Reis & Lucília Carmo Giordano & Victor Carvalho Cabral & Vinícius Queiroz Veloso & Fernando Mazo D’Affonseca, 2024. "Numerical modeling of a high magnitude debris-flow event occurred in Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(14), pages 13077-13107, November.
    3. Zhengyao Liu & Jing Huang & Yonghong Li & Xiaokang Liu & Fei Qiang & Yiping He, 2025. "A Bibliometric Analysis of Geological Hazards Monitoring Technologies," Sustainability, MDPI, vol. 17(3), pages 1-15, January.
    4. Hyo-sub Kang & Yun-tae Kim, 2016. "The physical vulnerability of different types of building structure to debris flow events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1475-1493, February.
    5. Giorgio Paglia & Giovanni Santucci & Marcello Buccolini & Enrico Miccadei, 2025. "Assessment of Potential Landslide Scenarios Using Morphometry, Geomorphological Constraints, and Run-Out Analysis: A Case Study from Central Apennines (Italy)," Land, MDPI, vol. 14(11), pages 1-28, October.
    6. Naseem Ahmad & Muhammad Shafique & Mian Luqman Hussain & Israr Ullah, 2025. "Integrated debris flow hazard and risk assessment using UAV data and RAMMS, a case study in northern Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1463-1487, January.
    7. Khattri, Khim B. & Pudasaini, Shiva P., 2019. "Channel flow simulation of a mixture with a full-dimensional generalized quasi two-phase model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 165(C), pages 280-305.
    8. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    9. Ming Chen & Yuting Luo & Chuan Tang & Ning Li, 2024. "Quantitative assessment of expected direct economic losses of buildings for debris flows in multiple rainfall intensity scenarios in Yangling Gully, Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2993-3014, February.
    10. Aaron Opdyke & Khadija Fatima, 2024. "Comparing the suitability of global gridded population datasets for local landslide risk assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2415-2432, February.
    11. Katrin Sieron & Lucia Capra & Sergio Rodríguez-Elizararrás, 2014. "Hazard assessment at San Martín volcano based on geological record, numerical modeling, and spatial analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 275-297, January.
    12. Vinicius Queiroz Veloso & Fabio Augusto Vieira Gomes Reis & Victor Cabral & José Eduardo Zaine & Claudia Vanessa Santos Corrêa & Marcelo Fischer Gramani & Caiubi Emmanuel Kuhn, 2023. "Hazard assessment of debris-flow-prone watersheds in Cubatão, São Paulo State, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3119-3138, April.
    13. Anna Ferrero & Maria Migliazza & Marina Pirulli, 2015. "Advance survey and modelling technologies for the study of the slope stability in an Alpine basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(1), pages 303-326, March.
    14. Adnan Özdemir & Mehmet Delikanli, 2009. "A geotechnical investigation of the retrogressive Yaka Landslide and the debris flow threatening the town of Yaka (Isparta, SW Turkey)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(1), pages 113-136, April.
    15. Gerardo Grelle & Antonietta Rossi & Paola Revellino & Luigi Guerriero & Francesco Maria Guadagno & Giuseppe Sappa, 2019. "Assessment of Debris-Flow Erosion and Deposit Areas by Morphometric Analysis and a GIS-Based Simplified Procedure: A Case Study of Paupisi in the Southern Apennines," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    16. Veniamin Perov & Sergey Chernomorets & Olga Budarina & Elena Savernyuk & Tatiana Leontyeva, 2017. "Debris flow hazards for mountain regions of Russia: regional features and key events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 199-235, August.
    17. Der-Guey Lin & Sen-Yen Hsu & Kuang-Tsung Chang, 2009. "Numerical simulations of flow motion and deposition characteristics of granular debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(3), pages 623-650, September.
    18. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
    19. Ruoshen Lin & Gang Mei & Ziyang Liu & Ning Xi & Xiaona Zhang, 2021. "Susceptibility Analysis of Glacier Debris Flow by Investigating the Changes in Glaciers Based on Remote Sensing: A Case Study," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    20. P. Champati Ray & Shovan Chattoraj & M. Bisht & Suresh Kannaujiya & Kamal Pandey & Ajanta Goswami, 2016. "Kedarnath disaster 2013: causes and consequences using remote sensing inputs," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 227-243, March.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:13:d:10.1007_s11069-025-07402-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.