IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i3d10.1007_s11069-023-06315-0.html
   My bibliography  Save this article

Quantitative assessment of expected direct economic losses of buildings for debris flows in multiple rainfall intensity scenarios in Yangling Gully, Southwest China

Author

Listed:
  • Ming Chen

    (Chengdu University of Technology)

  • Yuting Luo

    (Sichuan Anxin Kechuang Technology Co., Ltd
    Sichuan Academy of Safety Science and Technology)

  • Chuan Tang

    (Chengdu University of Technology)

  • Ning Li

    (Xihua University)

Abstract

The potential risks associated with debris flows have significantly increased due to changes in global climate, population growth, and economic development. Despite the high susceptibility of debris flows in the Wenchuan earthquake-affected area, few studies have focused on quantitative risk assessment methods for debris flows. To overcome this shortcoming, we proposed an integrated approach by using a probability-based model and numerical simulations to quantify the expected direct economic losses of buildings for debris flows under multiple rainfall intensity scenarios. First, we simulated the hazard processes of debris flows with recurrence periods of 20, 50, 100, and 200 years and obtained the distribution of debris flow intensities defined by the momentum flux. Then, we assessed the direct economic losses for each building related to different recurrence periods based on fragility curves and debris flow intensity maps. The results show that the risk loss of different hazard scenarios increases dramatically with an increase in debris flow magnitude. This methodology provides visual and quantitative risk assessment for specific buildings affected by debris flows, enabling authorities and decision-makers to reduce risk and optimize risk management strategies. It is a rapid and effective way to assess the capacity of the built environment to resist the risk of debris flows in the Wenchuan earthquake-affected areas.

Suggested Citation

  • Ming Chen & Yuting Luo & Chuan Tang & Ning Li, 2024. "Quantitative assessment of expected direct economic losses of buildings for debris flows in multiple rainfall intensity scenarios in Yangling Gully, Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2993-3014, February.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06315-0
    DOI: 10.1007/s11069-023-06315-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06315-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06315-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06315-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.