IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i3d10.1007_s11069-023-06283-5.html
   My bibliography  Save this article

Comparing the suitability of global gridded population datasets for local landslide risk assessments

Author

Listed:
  • Aaron Opdyke

    (The University of Sydney)

  • Khadija Fatima

    (The University of Sydney)

Abstract

Landslide risk assessments are increasingly crucial for meeting global disaster risk reduction strategies and mobilising knowledge for local governments to protect communities and infrastructure. These assessments are data intensive, requiring large amounts of spatial demographic and natural hazard information. There are a growing number of high-resolution gridded population datasets that have global coverage with significant potential to transform disaster risk modelling, however landslide research has not yet compared the suitability of these gridded datasets for local risk assessments. Combining social vulnerability indicators with high-resolution settlement layer (HRSL) and WorldPop gridded population datasets, as well as a local household survey, we layer landslide susceptibility maps to compare three landslide risk estimates, examining the case of the Municipality of Carigara located in the central Philippines. Using statistical t tests, we compare aggregated community landslide risk for 49 communities. Findings revealed that HRSL data resulted in similar landslide risk at community scales when compared to local surveys, however WorldPop data greatly overestimated risk. Our findings point to a high level of accuracy of HRSL when used as an exposure dataset for local landslide risk studies and recommend avoiding WorldPop for such purposes. This research advances understanding of the suitability of open population datasets for use in landslide risk assessments in resource-constrained communities.

Suggested Citation

  • Aaron Opdyke & Khadija Fatima, 2024. "Comparing the suitability of global gridded population datasets for local landslide risk assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2415-2432, February.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06283-5
    DOI: 10.1007/s11069-023-06283-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-06283-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-06283-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Casey Dowling & Paul Santi, 2014. "Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 203-227, March.
    2. Daniela Palacios-Lopez & Felix Bachofer & Thomas Esch & Wieke Heldens & Andreas Hirner & Mattia Marconcini & Alessandro Sorichetta & Julian Zeidler & Claudia Kuenzer & Stefan Dech & Andrew J. Tatem & , 2019. "New Perspectives for Mapping Global Population Distribution Using World Settlement Footprint Products," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    3. S. Modugno & S. C. M. Johnson & P. Borrelli & E. Alam & N. Bezak & H. Balzter, 2022. "Analysis of human exposure to landslides with a GIS multiscale approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 387-412, May.
    4. D. Yoon, 2012. "Assessment of social vulnerability to natural disasters: a comparative study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 823-843, September.
    5. Eric Tate, 2012. "Social vulnerability indices: a comparative assessment using uncertainty and sensitivity analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(2), pages 325-347, September.
    6. Andrew Smith & Paul D. Bates & Oliver Wing & Christopher Sampson & Niall Quinn & Jeff Neal, 2019. "New estimates of flood exposure in developing countries using high-resolution population data," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    7. Oscar Luigi Azzimonti & Matteo Colleoni & Mattia De Amicis & Ivan Frigerio, 2020. "Combining hazard, social vulnerability and resilience to provide a proposal for seismic risk assessment," Journal of Risk Research, Taylor & Francis Journals, vol. 23(9), pages 1225-1241, September.
    8. Susan L. Cutter & Bryan J. Boruff & W. Lynn Shirley, 2003. "Social Vulnerability to Environmental Hazards," Social Science Quarterly, Southwestern Social Science Association, vol. 84(2), pages 242-261, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isidro Cantarino Martí & Eric Gielen & José-Sergio Palencia-Jiménez & Miguel Ángel Carrión Carmona, 2025. "Population and Landslide Risk Evolution in Long Time Series: Case Study of the Valencian Community (1920–2021)," Land, MDPI, vol. 14(6), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beth Tellman & Cody Schank & Bessie Schwarz & Peter D. Howe & Alex de Sherbinin, 2020. "Using Disaster Outcomes to Validate Components of Social Vulnerability to Floods: Flood Deaths and Property Damage across the USA," Sustainability, MDPI, vol. 12(15), pages 1-28, July.
    2. Gainbi Park & Zengwang Xu, 2022. "The constituent components and local indicator variables of social vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(1), pages 95-120, January.
    3. Kangmin Kim & Jeon-Young Kang & Chulsue Hwang, 2025. "Identifying Indicators Contributing to the Social Vulnerability Index via a Scoping Review," Land, MDPI, vol. 14(2), pages 1-29, January.
    4. Nicolás C. Bronfman & Paula B. Repetto & Nikole Guerrero & Javiera V. Castañeda & Pamela C. Cisternas, 2021. "Temporal evolution in social vulnerability to natural hazards in Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1757-1784, June.
    5. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    6. Eric Tate & Aaron Strong & Travis Kraus & Haoyi Xiong, 2016. "Flood recovery and property acquisition in Cedar Rapids, Iowa," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 2055-2079, February.
    7. Mohammad Abdul Quader & Amanat Ullah Khan & Matthieu Kervyn, 2017. "Assessing Risks from Cyclones for Human Lives and Livelihoods in the Coastal Region of Bangladesh," IJERPH, MDPI, vol. 14(8), pages 1-26, July.
    8. Irfan Ahmad Rana & Jayant K. Routray, 2018. "Integrated methodology for flood risk assessment and application in urban communities of Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(1), pages 239-266, March.
    9. Mohsen Alizadeh & Esmaeil Alizadeh & Sara Asadollahpour Kotenaee & Himan Shahabi & Amin Beiranvand Pour & Mahdi Panahi & Baharin Bin Ahmad & Lee Saro, 2018. "Social Vulnerability Assessment Using Artificial Neural Network (ANN) Model for Earthquake Hazard in Tabriz City, Iran," Sustainability, MDPI, vol. 10(10), pages 1-23, September.
    10. Jonathan W. F. Remo & Nicholas Pinter & Moe Mahgoub, 2016. "Assessing Illinois’s flood vulnerability using Hazus-MH," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 265-287, March.
    11. Chipo Mudavanhu & Tawanda Manyangadze & Emmanuel Mavhura & Ezra Pedzisai & Desmond Manatsa, 2020. "Rural households’ vulnerability and risk of flooding in Mbire District, Zimbabwe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 3591-3608, September.
    12. Seunghoo Jeong & D. K. Yoon, 2018. "Examining Vulnerability Factors to Natural Disasters with a Spatial Autoregressive Model: The Case of South Korea," Sustainability, MDPI, vol. 10(5), pages 1-13, May.
    13. Seunghoo Jeong & Byeong Je Kim & Young‐Joo Lee & Ji‐Bum Chung & Sung‐Han Sim, 2020. "Individual Disaster Assistance For Socially Vulnerable People: Lessons Learned From the Pohang Earthquake in the Republic of Korea," Risk Analysis, John Wiley & Sons, vol. 40(11), pages 2373-2389, November.
    14. Mary Angelica Painter & Sameer H. Shah & Gwendolyn C. Damestoit & Fariha Khalid & Wendy Prudencio & Musabber Ali Chisty & Fernando Tormos-Aponte & Olga Wilhelmi, 2024. "A systematic scoping review of the Social Vulnerability Index as applied to natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(8), pages 7265-7356, June.
    15. Dean Kyne, 2023. "A Bird’s-Eye View of Colonias Hosting Forgotten Americans and Their Community Resilience in the Rio Grande Valley," Geographies, MDPI, vol. 3(3), pages 1-18, July.
    16. Mrittika Basu & Satoshi Hoshino & Shizuka Hashimoto, 2016. "A pragmatic analysis of water supply and demand, and adaptive capacity in rural areas: development of Rural Water Insecurity Index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 447-466, March.
    17. Zachary T. Goodman & Caitlin A. Stamatis & Justin Stoler & Christopher T. Emrich & Maria M. Llabre, 2021. "Methodological challenges to confirmatory latent variable models of social vulnerability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2731-2749, April.
    18. Ibolya Török, 2018. "Qualitative Assessment of Social Vulnerability to Flood Hazards in Romania," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    19. Seong Yun Cho & Heejun Chang, 2017. "Recent research approaches to urban flood vulnerability, 2006–2016," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 633-649, August.
    20. Weiwei Xie & Qingmin Meng, 2023. "An Integrated PCA–AHP Method to Assess Urban Social Vulnerability to Sea Level Rise Risks in Tampa, Florida," Sustainability, MDPI, vol. 15(3), pages 1-21, January.

    More about this item

    Keywords

    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:3:d:10.1007_s11069-023-06283-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.