IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v117y2023i2d10.1007_s11069-023-05923-0.html
   My bibliography  Save this article

Energy consumption analysis of the granular run-out process: effect of particle shape and slope angle

Author

Listed:
  • Liuqun Dong

    (Anhui University of Finance and Economics
    Huaiyin Normal University
    Tongji University)

Abstract

Flow-like landslides and debris flow disasters pose great threats to the human living environment. Disaster risk control largely relies on good knowledge of the mechanism of disaster evolution. To better understand debris propagation and develop a run-out model, this paper conducts a detailed analysis of the coupled effect of slope angle and particle shape based on energy consumption, which is still lacking in the literature. A series of DEM simulation tests considering five types of particle shapes are conducted. The results indicate that particle shape exerts a great influence on granular mobility, and the mobility is ranked from high to low as sphere-like particles, pyramid-like particles, slab-like particles, cube-like particles and rod-like particles. Such a particle shape effect is also dependent on the flow inertia properties, and more inertial granular flow shows a less significant particle shape effect on its mobility. Particle shape effect on granular mobility is mainly through affecting the energy loss caused by tangential collision and rolling friction, and this conclusion is independent of slope angle. In addition, we found that the lower energy loss of the granular flow surging downslope with steep terrain is also an important mechanism of its high-speed nature.

Suggested Citation

  • Liuqun Dong, 2023. "Energy consumption analysis of the granular run-out process: effect of particle shape and slope angle," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1673-1687, June.
  • Handle: RePEc:spr:nathaz:v:117:y:2023:i:2:d:10.1007_s11069-023-05923-0
    DOI: 10.1007/s11069-023-05923-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05923-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05923-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Casey Dowling & Paul Santi, 2014. "Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 203-227, March.
    2. G. Wang, 2013. "Lessons learned from protective measures associated with the 2010 Zhouqu debris flow disaster in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(3), pages 1835-1847, December.
    3. Veniamin Perov & Sergey Chernomorets & Olga Budarina & Elena Savernyuk & Tatiana Leontyeva, 2017. "Debris flow hazards for mountain regions of Russia: regional features and key events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 199-235, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhengyao Liu & Jing Huang & Yonghong Li & Xiaokang Liu & Fei Qiang & Yiping He, 2025. "A Bibliometric Analysis of Geological Hazards Monitoring Technologies," Sustainability, MDPI, vol. 17(3), pages 1-15, January.
    2. C. Emdad Haque & Mahed-Ul-Islam Choudhury & Md. Sowayib Sikder, 2019. "“Events and failures are our only means for making policy changes”: learning in disaster and emergency management policies in Manitoba, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 98(1), pages 137-162, August.
    3. Chenchen Qiu & Lijun Su & Xueyu Geng, 2024. "A precipitation downscaling framework for regional warning of debris flows in mountainous areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(2), pages 1979-2004, January.
    4. Ming Chen & Yuting Luo & Chuan Tang & Ning Li, 2024. "Quantitative assessment of expected direct economic losses of buildings for debris flows in multiple rainfall intensity scenarios in Yangling Gully, Southwest China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2993-3014, February.
    5. Ning Bao & Jian-feng Chen & Rui Sun, 2023. "A simplified method to estimate the distribution of lateral forces acting on stabilizing piles in c–φ soil slopes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1321-1347, June.
    6. Yao Shunyu & Nazir Ahmed Bazai & Tang Jinbo & Jiang Hu & Yi Shujian & Zou Qiang & Tashfain Ahmed & Guo Jian, 2022. "Dynamic process of a typical slope debris flow: a case study of the wujia gully, Zengda, Sichuan Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 565-586, May.
    7. Aaron Opdyke & Khadija Fatima, 2024. "Comparing the suitability of global gridded population datasets for local landslide risk assessments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(3), pages 2415-2432, February.
    8. Sven Fuchs & Alexandr Shnyparkov & Vincent Jomelli & Nikolay Kazakov & Sergey Sokratov, 2017. "Editorial to the special issue on natural hazards and risk research in Russia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(1), pages 1-16, August.
    9. Jia Li & Xia Wang & Haixia Jia & Yang Liu & Yunfei Zhao & Changming Shi & Furong Zhang, 2022. "Effect of herbaceous plant root density on slope stability in a shallow landslide-prone area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2337-2360, July.
    10. He, Songtang & Wang, Daojie & Zhao, Peng & Li, Yong & Lan, Huijuan & Chen, Wenle & Jamali, Ali Akbar, 2020. "A review and prospects of debris flow waste-shoal land use in typical debris flow areas, China," Land Use Policy, Elsevier, vol. 99(C).
    11. Zhiheng Wang & Dongchuan Wang & Qiaozhen Guo & Daikun Wang, 2020. "Regional landslide hazard assessment through integrating susceptibility index and rainfall process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2153-2173, December.
    12. Jon L. Riedel & Sharon M. Sarrantonio, 2021. "Debris flow magnitude, frequency, and precipitation threshold in the eastern North Cascades, Washington, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(3), pages 2519-2544, April.
    13. Loredana Antronico & Roberto Coscarelli & Francesco De Pascale & Francesca Condino, 2019. "Social Perception of Geo-Hydrological Risk in the Context of Urban Disaster Risk Reduction: A Comparison between Experts and Population in an Area of Southern Italy," Sustainability, MDPI, vol. 11(7), pages 1-23, April.
    14. Jiangcheng Huang & Huijuan Xu & Xingwu Duan & Xu Li & Peijia Wang, 2020. "Activity patterns and controlling factors of debris flows in the Upper Salween Alpine Valley," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1367-1383, August.
    15. Taixin Peng & Ningsheng Chen & Guisheng Hu & Shufeng Tian & Huayong Ni & Ling Huang, 2025. "New rulers for estimating the magnitude of catastrophic debris flows," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1765-1778, January.
    16. Yan Du & Hui Liu & Heng Li & Mowen Xie & Santos D. Chicas & Jidong Wu & Fuxia Lv & Yaxin Wu, 2024. "Exploring the initiating mechanism, monitoring equipment and warning indicators of gully-type debris flow for disaster reduction: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 13667-13692, December.
    17. Elena Petrova, 2022. "Investigation of accidents in the infrastructure triggered by debris flows in Russia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3293-3308, December.
    18. Pukar Amatya & Corey Scheip & Aline Déprez & Jean-Philippe Malet & Stephen L. Slaughter & Alexander L. Handwerger & Robert Emberson & Dalia Kirschbaum & Julien Jean-Baptiste & Mong-Han Huang & Marin K, 2023. "Learnings from rapid response efforts to remotely detect landslides triggered by the August 2021 Nippes earthquake and Tropical Storm Grace in Haiti," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2337-2375, September.
    19. Chunliu Gao & Deqiang Cheng & Javed Iqbal & Shunyu Yao, 2023. "Spatiotemporal Change Analysis and Prediction of the Great Yellow River Region (GYRR) Land Cover and the Relationship Analysis with Mountain Hazards," Land, MDPI, vol. 12(2), pages 1-24, January.
    20. Hao Wang & Jintao Zhang & Qing Hu & Wei Liu & Liqun Ma, 2025. "Effect of channel confluence on the dynamics of debris flow in the Niutang Gully," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1441-1461, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:117:y:2023:i:2:d:10.1007_s11069-023-05923-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.