IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v76y2015i2p1039-1061.html
   My bibliography  Save this article

A method to reveal climatic variables triggering slope failures at high elevation

Author

Listed:
  • Roberta Paranunzio
  • Francesco Laio
  • Guido Nigrelli
  • Marta Chiarle

Abstract

The air temperature in the Alps has increased at a rate more than twice the global average in the last century, and a significant increase in the number of slope failures has also been documented, in particular in glacial and periglacial areas. Thus, the relationship between climatological forcing and processes of instability at high elevation is worth analyzing. We provide a simple, statistically based method aimed at identifying a relationship between climate factors and the triggering of geohazards. Our main idea is to compare the meteorological conditions at the time when the instability occurred with the typical conditions in the same place. Carrying out a straightforward analysis based on the use of the empirical distribution function, we are able to determine whether any of the meteorological variables had nonstandard values in the lead-up to the slope failure event, and thus to identify the variables that are likely to have acted as triggering factors for the slope failure. The method has been tested on five events in the glacial and periglacial areas of the Piedmont Alps (Northwestern Italy) occurring between 1989 and 2008. Out of these five case studies, our research shows that four can be attributed to climatic anomalies (rise of temperature and/or heavy precipitation). The results of this study may contribute to developing knowledge about the relationships between climatic variables and slope failures at high elevations, providing interesting insights into the expected impact of ongoing global warming on geohazards. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • Roberta Paranunzio & Francesco Laio & Guido Nigrelli & Marta Chiarle, 2015. "A method to reveal climatic variables triggering slope failures at high elevation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1039-1061, March.
  • Handle: RePEc:spr:nathaz:v:76:y:2015:i:2:p:1039-1061
    DOI: 10.1007/s11069-014-1532-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1532-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1532-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luzia Fischer & Henri Eisenbeiss & Andreas Kääb & Christian Huggel & Wilfried Haeberli, 2011. "Monitoring topographic changes in a periglacial high‐mountain face using high‐resolution DTMs, Monte Rosa East Face, Italian Alps," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 22(2), pages 140-152, April.
    2. Stefania Lucchesi & Gianfranco Fioraso & Stefania Bertotto & Marta Chiarle, 2014. "Little Ice Age and contemporary glacier extent in the Western and South-Western Piedmont Alps (North-Western Italy)," Journal of Maps, Taylor & Francis Journals, vol. 10(3), pages 409-423, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivo Offenthaler & Astrid Felderer & Herbert Formayer & Natalie Glas & David Leidinger & Philip Leopold & Anna Schmidt & Manfred J. Lexer, 2020. "Threshold or Limit? Precipitation Dependency of Austrian Landslides, an Ongoing Challenge for Hazard Mapping under Climate Change," Sustainability, MDPI, vol. 12(15), pages 1-17, July.
    2. Thea Turkington & Alexandre Remaître & Janneke Ettema & Haydar Hussin & Cees Westen, 2016. "Assessing debris flow activity in a changing climate," Climatic Change, Springer, vol. 137(1), pages 293-305, July.
    3. Zheng Wang & Ningsheng Chen & Guisheng Hu & Yong Zhang & Genxu Wang & Zheng Han, 2023. "Hydrometeorological triggering of periglacial debris flows using a Bayesian approach: a case study of the Hailuogou Gully region, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2871-2888, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:76:y:2015:i:2:p:1039-1061. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.