IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v126y2014i3p469-483.html
   My bibliography  Save this article

Dissecting indices of aridity for assessing the impacts of global climate change

Author

Listed:
  • Evan Girvetz
  • Chris Zganjar

Abstract

There is great interest in understanding how climate change will impact aridity through the interaction of precipitation changes with rising temperatures. The Aridity Index (AI), Climatic Moisture Deficit (CMD), and Climatic Moisture Surplus (CMS) are metrics commonly used to quantify and map patterns in aridity and water cycling. Here we show that these metrics have different patterns of change under future climate—based on an ensemble of nine general circulation climate models—and the different metrics are appropriate for different purposes. Based on these differences between the metrics, we propose that aridity can be dissected into three different types—hydrological (CMS), agricultural (CMD), and meteorological. In doing this, we propose a novel modified version of the Aridity Index, called AI+, that can be useful for assessing changes in meteorological aridity. The AI + is based on the same ratio between precipitation and evapotranspiration as the traditional AI, but unlike the traditional AI, the AI + only accounts for changes to precipitation during months when precipitation is less than reference/potential evapotranspiration (i.e. there is a deficit). Moreover, we show that the traditional AI provides a better estimate of change in moisture surplus driven by changes to precipitation during the wet season, rather than changes in deficit that occur during the drier seasons. These results show that it is important to select the most appropriate metric for assessing climate driven changes in aridity. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Evan Girvetz & Chris Zganjar, 2014. "Dissecting indices of aridity for assessing the impacts of global climate change," Climatic Change, Springer, vol. 126(3), pages 469-483, October.
  • Handle: RePEc:spr:climat:v:126:y:2014:i:3:p:469-483
    DOI: 10.1007/s10584-014-1218-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-014-1218-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-014-1218-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zomer, Robert J. & Bossio, Deborah A. & Trabucco, Antonio & Yuanjie, Li & Gupta, Diwan C. & Singh, Virendra P., 2007. "Trees and water: smallholder agroforestry on irrigated lands in Northern India," IWMI Research Reports 53067, International Water Management Institute.
    2. Zomer, Robert J. & Bossio, Deborah A. & Trabucco, Antonio & Yuanjie, Li & Gupta, Diwan C. & Singh, Virendra P., 2007. "Trees and water: smallholder agroforestry on irrigated lands in Northern India," IWMI Research Reports H041069, International Water Management Institute.
    3. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    4. Evan H Girvetz & Chris Zganjar & George T Raber & Edwin P Maurer & Peter Kareiva & Joshua J Lawler, 2009. "Applied Climate-Change Analysis: The Climate Wizard Tool," PLOS ONE, Public Library of Science, vol. 4(12), pages 1-19, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lidia Yadira Perez-Aguilar & Wenseslao Plata-Rocha & Sergio Alberto Monjardin-Armenta & Cuauhtémoc Franco-Ochoa, 2022. "Aridity Analysis Using a Prospective Geospatial Simulation Model in This Mid-Century for the Northwest Region of Mexico," Sustainability, MDPI, vol. 14(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hagos, Fitsum & Makombe, Godswill & Namara, Regassa & Awulachew, Seleshi Bekele, 2008. "Importance of irrigated agriculture to the Ethiopian economy: capturing the direct net benefits of irrigation," Conference Papers h044133, International Water Management Institute.
    2. Gebregziabher, Gebrehaweria & Rebelo, Lisa-Maria & Notenbaert, A. & Ergano, K. & Abebe, Yenenesh, 2013. "Determinants of adoption of rainwater management technologies among farm households in the Nile River Basin," IWMI Reports 201008, International Water Management Institute.
    3. Herguido Sevillano, E. & Lavado Contador, J.F. & Schnabel, S. & Pulido, M. & Ibáñez, J., 2018. "Using spatial models of temporal tree dynamics to evaluate the implementation of EU afforestation policies in rangelands of SW Spain," Land Use Policy, Elsevier, vol. 78(C), pages 166-175.
    4. Daniel García-Galindo & Arkadiusz Dyjakon & Fernando Cay Villa-Ceballos, 2019. "Building Variable Productivity Ratios for Improving Large Scale Spatially Explicit Pruning Biomass Assessments," Energies, MDPI, vol. 12(5), pages 1-25, March.
    5. Richard Ackermann, 2012. "New Directions for Water Management in Indian Agriculture," Global Journal of Emerging Market Economies, Emerging Markets Forum, vol. 4(2), pages 227-288, May.
    6. Giuseppe Badagliacca & Maurizio Romeo & Emilio Lo Presti & Antonio Gelsomino & Michele Monti, 2020. "Factors Governing Total and Permanganate Oxidizable C Pools in Agricultural Soils from Southern Italy," Agriculture, MDPI, vol. 10(4), pages 1-22, April.
    7. Stefano Biagetti & Debora Zurro & Jonas Alcaina-Mateos & Eugenio Bortolini & Marco Madella, 2021. "Quantitative Analysis of Drought Management Strategies across Ethnographically-Researched African Societies: A Pilot Study," Land, MDPI, vol. 10(10), pages 1-15, October.
    8. Jalal Kassout & Jean-Frederic Terral & John G Hodgson & Mohammed Ater, 2019. "Trait-based plant ecology a flawed tool in climate studies? The leaf traits of wild olive that pattern with climate are not those routinely measured," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-25, July.
    9. Sanju John Thomas & Mukund Haribhau Bade & Sudhansu Sekhar Sahoo & Sheffy Thomas & Ajith Kumar & Mohamed M. Awad, 2022. "Urban Water Management with a Full Cost Recovery Policy: The Impact of Externalities on Pricing," Sustainability, MDPI, vol. 14(21), pages 1-16, November.
    10. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    11. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    12. Hongli Wang & Yongxiang Zhang & Xuemei Shao, 2021. "A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China," Climatic Change, Springer, vol. 165(1), pages 1-16, March.
    13. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    14. Pere Quintana-Seguí & Anaïs Barella-Ortiz & Sabela Regueiro-Sanfiz & Gonzalo Miguez-Macho, 2020. "The Utility of Land-Surface Model Simulations to Provide Drought Information in a Water Management Context Using Global and Local Forcing Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(7), pages 2135-2156, May.
    15. Francisco José Del-Toro-Guerrero & Luis Walter Daesslé & Rodrigo Méndez-Alonzo & Thomas Kretzschmar, 2022. "Surface Reflectance–Derived Spectral Indices for Drought Detection: Application to the Guadalupe Valley Basin, Baja California, Mexico," Land, MDPI, vol. 11(6), pages 1-19, May.
    16. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    17. Riccardo Colacito & Bridget Hoffmann & Toan Phan, 2019. "Temperature and Growth: A Panel Analysis of the United States," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(2-3), pages 313-368, March.
    18. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    19. repec:aud:audfin:v:21:y:2019:i:51:p:361 is not listed on IDEAS
    20. Benjamin L. Turner & Hector M. Menendez & Roger Gates & Luis O. Tedeschi & Alberto S. Atzori, 2016. "System Dynamics Modeling for Agricultural and Natural Resource Management Issues: Review of Some Past Cases and Forecasting Future Roles," Resources, MDPI, vol. 5(4), pages 1-24, November.
    21. Diana Reckien & Johannes Flacke & Marta Olazabal & Oliver Heidrich, 2015. "The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities," PLOS ONE, Public Library of Science, vol. 10(8), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:126:y:2014:i:3:p:469-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.