IDEAS home Printed from
   My bibliography  Save this article

Snowpack and runoff response to climate change in Owens Valley and Mono Lake watersheds


  • Mariza Costa-Cabral


  • Sujoy Roy
  • Edwin Maurer
  • William Mills
  • Limin Chen


Precipitation from the Eastern Sierra Nevada watersheds of Owens Lake and Mono Lake is one of the main water sources for Los Angeles’ over 4 million people, and plays a major role in the ecology of Mono Lake and of these watersheds. We use the Variable Infiltration Capacity (VIC) hydrologic model at daily time scale, forced by climate projections from 16 global climate models under greenhouse gas emissions scenarios B1 and A2, to evaluate likely hydrologic responses in these watersheds for 1950–2099. Comparing climate in the latter half of the 20th Century to projections for 2070–2099, we find that all projections indicate continued temperature increases, by 2–5 °C, but differ on precipitation changes, ranging from −24 % to +56 %. As a result, the fraction of precipitation falling as rain is projected to increase, from a historical 0.19 to a range of 0.26–0.52 (depending on the GCM and emission scenario), leading to earlier timing of the annual hydrograph’s center, by a range of 9–37 days. Snowpack accumulation depends on temperature and even more strongly on precipitation due to the high elevation of these watersheds (reaching 4,000 m), and projected changes for April 1 snow water equivalent range from −67 % to +9 %. We characterize the watershed’s hydrologic response using variables integrated in space over the entire simulated area and aggregated in time over 30-year periods. We show that from the complex dynamics acting at fine time scales (seasonal and sub-seasonal) simple dynamics emerge at this multi-year time scale. Of particular interest are the dynamic effects of temperature. Warming anticipates hydrograph timing, by raising the fraction of precipitation falling as rain, reducing the volume of snowmelt, and initiating snowmelt earlier. This timing shift results in the depletion of soil moisture in summer, when potential evapotranspiration is highest. Summer evapotranspiration losses are limited by soil moisture availability, and as a result the watershed’s water balance at the annual and longer scales is insensitive to warming. Mean annual runoff changes at base-of-mountain stations are thus strongly determined by precipitation changes. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Mariza Costa-Cabral & Sujoy Roy & Edwin Maurer & William Mills & Limin Chen, 2013. "Snowpack and runoff response to climate change in Owens Valley and Mono Lake watersheds," Climatic Change, Springer, vol. 116(1), pages 97-109, January.
  • Handle: RePEc:spr:climat:v:116:y:2013:i:1:p:97-109
    DOI: 10.1007/s10584-012-0529-y

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:116:y:2013:i:1:p:97-109. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.