IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00871-2.html
   My bibliography  Save this article

Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China

Author

Listed:
  • Haiyan Fang

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zemeng Fan

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

The impact of climate or land use change on hydro-sedimentological process has been widely studied. However, their combined and distinct impacts to catchment runoff and sediment yield (SY) have received comparatively little attention, which impedes decision makers to better manage land use. To that end, the spatially distributed TETIS model was adopted to estimate impacts of land use and climate change on runoff and SY during 1978–2014 in the Yian catchment of the black soil region, northeastern China. Results indicated that the scenario with only climate change increased water and SYs by 31.55% and 92.1%, respectively. The scenarios with the changes in land use in 1985, 1995, 2000 and 2010 increased water and SYs by 1.28% and 12.54%, respectively. With respect to the baseline period in 1978–1987, the average increased rates of water and SYs were 31.7% and 114.5%, respectively. The contributions by climate change were 99.5% for water yield and 69.2% for SY, respectively. This study indicated that rational configuration and management of land use can alleviate the adverse impact derived by climate change in the black soil region and similar regions all over the world.

Suggested Citation

  • Haiyan Fang & Zemeng Fan, 2021. "Impacts of climate and land use changes on water and sediment yields for the black soil region, northeastern China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6259-6278, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00871-2
    DOI: 10.1007/s10668-020-00871-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00871-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00871-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. P. Barnett & J. C. Adam & D. P. Lettenmaier, 2005. "Potential impacts of a warming climate on water availability in snow-dominated regions," Nature, Nature, vol. 438(7066), pages 303-309, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dalei Hao & Gautam Bisht & Hailong Wang & Donghui Xu & Huilin Huang & Yun Qian & L. Ruby Leung, 2023. "A cleaner snow future mitigates Northern Hemisphere snowpack loss from warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    3. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2017. "The role of glacier retreat for Swiss hydropower production," Earth Arxiv 7z96d, Center for Open Science.
    4. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    5. Donna, Javier & Espin Sanchez, Jose, 2014. "The Illiquidity of Water Markets," MPRA Paper 117166, University Library of Munich, Germany.
    6. Donna, Javier D. & Espin-Sanchez, Jose, 2018. "Are Water Markets Liquid? Evidence from Southeastern Spain," MPRA Paper 117032, University Library of Munich, Germany.
    7. Shakil Ahmad Romshoo & Jasia Bashir & Irfan Rashid, 2020. "Twenty-first century-end climate scenario of Jammu and Kashmir Himalaya, India, using ensemble climate models," Climatic Change, Springer, vol. 162(3), pages 1473-1491, October.
    8. Muhammad Arfan & Jewell Lund & Daniyal Hassan & Maaz Saleem & Aftab Ahmad, 2019. "Assessment of Spatial and Temporal Flow Variability of the Indus River," Resources, MDPI, vol. 8(2), pages 1-17, May.
    9. Marion Réveillet & Marie Dumont & Simon Gascoin & Matthieu Lafaysse & Pierre Nabat & Aurélien Ribes & Rafife Nheili & Francois Tuzet & Martin Ménégoz & Samuel Morin & Ghislain Picard & Paul Ginoux, 2022. "Black carbon and dust alter the response of mountain snow cover under climate change," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    10. Wei Shi & Fuwei Qiao & Liang Zhou, 2021. "Identification of Ecological Risk Zoning on Qinghai-Tibet Plateau from the Perspective of Ecosystem Service Supply and Demand," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    11. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    12. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Vimal Mishra & Reepal Shah & Amit Garg, 2016. "Climate Change in Madhya Pradesh: Indicators, Impacts and Adaptation," Working Papers id:10844, eSocialSciences.
    14. Xiuxue Chen & Xiaofeng Li & Lingjia Gu & Xingming Zheng & Guangrui Wang & Lei Li, 2021. "Increasing Snow–Soil Interface Temperature in Farmland of Northeast China from 1979 to 2018," Agriculture, MDPI, vol. 11(9), pages 1-18, September.
    15. Tobias Siegfried & Thomas Bernauer & Renaud Guiennet & Scott Sellars & Andrew Robertson & Justin Mankin & Peter Bauer-Gottwein & Andrey Yakovlev, 2012. "Will climate change exacerbate water stress in Central Asia?," Climatic Change, Springer, vol. 112(3), pages 881-899, June.
    16. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    17. Lanhai Li & Honggang Xu & Xi Chen & S. Simonovic, 2010. "Streamflow Forecast and Reservoir Operation Performance Assessment Under Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 83-104, January.
    18. Schaefli, Bettina & Manso, Pedro & Fischer, Mauro & Huss, Matthias & Farinotti, Daniel, 2019. "The role of glacier retreat for Swiss hydropower production," Renewable Energy, Elsevier, vol. 132(C), pages 615-627.
    19. Donna, Javier D. & Espin Sanchez, Jose, 2014. "The Illiquidity of Water Markets: The Global Water Forum," MPRA Paper 117167, University Library of Munich, Germany.
    20. Shreedhar Maskey & Stefan Uhlenbrook & Sunal Ojha, 2011. "An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data," Climatic Change, Springer, vol. 108(1), pages 391-400, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00871-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.