IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v107y2011i3p247-265.html
   My bibliography  Save this article

Long memory in temperature reconstructions

Author

Listed:
  • William Rea
  • Marco Reale
  • Jennifer Brown

Abstract

No abstract is available for this item.

Suggested Citation

  • William Rea & Marco Reale & Jennifer Brown, 2011. "Long memory in temperature reconstructions," Climatic Change, Springer, vol. 107(3), pages 247-265, August.
  • Handle: RePEc:spr:climat:v:107:y:2011:i:3:p:247-265
    DOI: 10.1007/s10584-011-0068-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0068-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0068-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Philipp Sibbertsen, 2004. "Long memory versus structural breaks: An overview," Statistical Papers, Springer, vol. 45(4), pages 465-515, October.
    2. Smith, Aaron, 2005. "Level Shifts and the Illusion of Long Memory in Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 321-335, July.
    3. Michael E. Mann & Raymond S. Bradley & Malcolm K. Hughes, 1998. "Global-scale temperature patterns and climate forcing over the past six centuries," Nature, Nature, vol. 392(6678), pages 779-787, April.
    4. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    5. Baillie, Richard T. & Chung, Sang-Kuck, 2002. "Modeling and forecasting from trend-stationary long memory models with applications to climatology," International Journal of Forecasting, Elsevier, vol. 18(2), pages 215-226.
    6. Zeileis, Achim & Leisch, Friedrich & Hornik, Kurt & Kleiber, Christian, 2002. "strucchange: An R Package for Testing for Structural Change in Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i02).
    7. Deo, Rohit S. & Chen, Willa W., 2000. "On the integral of the squared periodogram," Stochastic Processes and their Applications, Elsevier, vol. 85(1), pages 159-176, January.
    8. Mark J. Jensen, 1997. "Using Wavelets to Obtain a Consistent Ordinary Least Squares Estimator of the Long Memory Parameter," Econometrics 9710002, University Library of Munich, Germany.
    9. Isabelle Chuine & Pascal Yiou & Nicolas Viovy & Bernard Seguin & Valérie Daux & Emmanuel Le Roy Ladurie, 2004. "Grape ripening as a past climate indicator," Nature, Nature, vol. 432(7015), pages 289-290, November.
    10. D'Andrade, Kendall, 1992. "The End of an Era," Business Ethics Quarterly, Cambridge University Press, vol. 2(3), pages 379-389, July.
    11. Terence C. Mills, 2007. "Time series modelling of two millennia of northern hemisphere temperatures: long memory or shifting trends?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(1), pages 83-94, January.
    12. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luisa Bisaglia & Matteo Grigoletto, 2018. "A new time-varying model for forecasting long-memory series," Papers 1812.07295, arXiv.org.
    2. Claudio, Morana & Giacomo, Sbrana, 2017. "Temperature anomalies, radiative forcing and ENSO," Working Papers 361, University of Milano-Bicocca, Department of Economics, revised 10 Feb 2017.
    3. Luis A. Gil-Alana & Laura Sauci, 2019. "Temperatures across Europe: evidence of time trends," Climatic Change, Springer, vol. 157(3), pages 355-364, December.
    4. Luisa Bisaglia & Matteo Grigoletto, 2021. "A new time-varying model for forecasting long-memory series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 139-155, March.
    5. Federico Maddanu, 2023. "Forecasting highly persistent time series with bounded spectrum processes," Statistical Papers, Springer, vol. 64(1), pages 285-319, February.
    6. Luis A. Gil-Alana, 2015. "Linear and segmented trends in sea surface temperature data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(7), pages 1531-1546, July.
    7. Francisco Estrada & Pierre Perron, "undated". "Detection and attribution of climate change through econometric methods," Boston University - Department of Economics - Working Papers Series 2013-015, Boston University - Department of Economics.
    8. Robert Kaufmann & Heikki Kauppi & Michael Mann & James Stock, 2013. "Does temperature contain a stochastic trend: linking statistical results to physical mechanisms," Climatic Change, Springer, vol. 118(3), pages 729-743, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Les Oxley & Chris Price & William Rea & Marco Reale, 2008. "A New Procedure to Test for H Self-Similarity," Working Papers in Economics 08/16, University of Canterbury, Department of Economics and Finance.
    2. Rea, William & Oxley, Les & Reale, Marco & Brown, Jennifer, 2013. "Not all estimators are born equal: The empirical properties of some estimators of long memory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 29-42.
    3. Jennifer Brown & Les Oxley & William Rea & Marco Reale, 2008. "The Empirical Properties of Some Popular Estimators of Long Memory Processes," Working Papers in Economics 08/13, University of Canterbury, Department of Economics and Finance.
    4. Rea, William & Reale, Marco & Brown, Jennifer & Oxley, Les, 2011. "Long memory or shifting means in geophysical time series?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1441-1453.
    5. Richard T. Baillie & Fabio Calonaci & Dooyeon Cho & Seunghwa Rho, 2019. "Long Memory, Realized Volatility and HAR Models," Working Papers 881, Queen Mary University of London, School of Economics and Finance.
    6. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    7. Zied Ftiti & Slim Chaouachi, 2018. "What Can We Learn About the Real Exchange Rate Behavior in the Case of a Peripheral Country?," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 16(3), pages 681-707, September.
    8. Giorgio Canarella & Luis Gil-Alana & Rangan Gupta & Stephen M Miller, 2021. "Persistence and cyclical dynamics of US and UK house prices: Evidence from over 150 years of data," Urban Studies, Urban Studies Journal Limited, vol. 58(1), pages 53-72, January.
    9. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    10. J. Eduardo Vera-Valdés, 2021. "Temperature Anomalies, Long Memory, and Aggregation," Econometrics, MDPI, vol. 9(1), pages 1-22, March.
    11. Contreras-Reyes, Javier E., 2022. "Rényi entropy and divergence for VARFIMA processes based on characteristic and impulse response functions," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Muniandy, Sithi V. & Uning, Rosemary, 2006. "Characterization of exchange rate regimes based on scaling and correlation properties of volatility for ASEAN-5 countries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 585-598.
    13. Marie Busch & Philipp Sibbertsen, 2018. "An Overview of Modified Semiparametric Memory Estimation Methods," Econometrics, MDPI, vol. 6(1), pages 1-21, March.
    14. Bhandari, Avishek, 2020. "Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks," MPRA Paper 101946, University Library of Munich, Germany.
    15. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    16. Adam McCloskey & Pierre Perron, 2012. "Memory Parameter Estimation in the Presence of Level Shifts and Deterministic Trends," Working Papers 2012-15, Brown University, Department of Economics.
    17. Grassi, Stefano & Santucci de Magistris, Paolo, 2014. "When long memory meets the Kalman filter: A comparative study," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 301-319.
    18. Pierre Perron & Francisco Estrada & Carlos Gay-García & Benjamín Martínez-López, 2011. "A time-series analysis of the 20th century climate simulations produced for the IPCC’s AR4," Boston University - Department of Economics - Working Papers Series WP2011-051, Boston University - Department of Economics.
    19. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    20. OlaOluwa Simon Yaya & Luis Alberiko Gil-Alana, 2020. "Modelling Long-Range Dependence and Non-linearity in the Infant Mortality Rates of African Countries," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 26(3), pages 303-315, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:107:y:2011:i:3:p:247-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.