IDEAS home Printed from https://ideas.repec.org/a/spr/astaws/v17y2023i3d10.1007_s11943-023-00329-7.html
   My bibliography  Save this article

Qualitätsdimensionen maschinellen Lernens in der amtlichen Statistik
[Quality Dimensions of Machine Learning in Official Statistics]

Author

Listed:
  • Younes Saidani

    (Statistisches Bundesamt)

  • Florian Dumpert

    (Statistisches Bundesamt)

  • Christian Borgs

    (Information und Technik Nordrhein-Westfalen)

  • Alexander Brand

    (Bayerisches Landesamt für Statistik)

  • Andreas Nickl

    (Bayerisches Landesamt für Statistik)

  • Alexandra Rittmann

    (Statistisches Landesamt Sachsen-Anhalt)

  • Johannes Rohde

    (Information und Technik Nordrhein-Westfalen)

  • Christian Salwiczek

    (Statistisches Amt für Hamburg und Schleswig-Holstein)

  • Nina Storfinger

    (Bayerisches Landesamt für Statistik)

  • Selina Straub

    (Bayerisches Landesamt für Statistik)

Abstract

Zusammenfassung Die amtliche Statistik zeichnet sich durch ihren gesetzlich auferlegten Fokus auf die Qualität ihrer Veröffentlichungen aus. Dabei folgt sie den europäischen Qualitätsrahmenwerken, die auf nationaler Ebene in Form von Qualitätshandbüchern konkretisiert und operationalisiert werden, sich jedoch bis dato hinsichtlich Ausgestaltung und Interpretation an den Anforderungen der „klassischen“ Statistikproduktion orientieren. Der zunehmende Einsatz maschineller Lernverfahren (ML) in der amtlichen Statistik muss daher zur Erfüllung des Qualitätsanspruchs durch ein spezifisches, darauf zugeschnittenes Qualitätsrahmenwerk begleitet werden. Das vorliegende Papier leistet einen Beitrag zur Erarbeitung eines solchen Qualitätsrahmenwerks für den Einsatz von ML in der amtlichen Statistik, indem es (1) durch den Vergleich mit bestehenden Qualitätsgrundsätzen des Verhaltenskodex für Europäische Statistiken relevante Qualitätsdimensionen für ML identifiziert und (2) diese unter Berücksichtigung der besonderen methodischen Gegebenheiten von ML ausarbeitet. Dabei (2a) ergänzt es bestehende Vorschläge durch den Aspekt der Robustheit, (2b) stellt Bezug zu den Querschnittsthemen Machine Learning Operations (MLOps) und Fairness her und (2c) schlägt vor, wie die Qualitätssicherung der einzelnen Dimensionen in der Praxis der amtlichen Statistik ausgestaltet werden kann. Diese Arbeit liefert die konzeptionelle Grundlage, um Qualitätsindikatoren für ML-Verfahren formell in die Instrumente des Qualitätsmanagements im Statistischen Verbund zu überführen und damit langfristig den hohen Qualitätsstandard amtlicher Statistik auch bei Nutzung neuer Verfahren zu sichern.

Suggested Citation

  • Younes Saidani & Florian Dumpert & Christian Borgs & Alexander Brand & Andreas Nickl & Alexandra Rittmann & Johannes Rohde & Christian Salwiczek & Nina Storfinger & Selina Straub, 2023. "Qualitätsdimensionen maschinellen Lernens in der amtlichen Statistik [Quality Dimensions of Machine Learning in Official Statistics]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 17(3), pages 253-303, December.
  • Handle: RePEc:spr:astaws:v:17:y:2023:i:3:d:10.1007_s11943-023-00329-7
    DOI: 10.1007/s11943-023-00329-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11943-023-00329-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11943-023-00329-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    2. Florian Dumpert & Martin Beck, 2017. "Einsatz von Machine-Learning-Verfahren in amtlichen Unternehmensstatistiken [Use of machine learning in official business statistics]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 11(2), pages 83-106, October.
    3. Sarah Friedrich & Gerd Antes & Sigrid Behr & Harald Binder & Werner Brannath & Florian Dumpert & Katja Ickstadt & Hans A. Kestler & Johannes Lederer & Heinz Leitgöb & Markus Pauly & Ansgar Steland & A, 2022. "Is there a role for statistics in artificial intelligence?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 823-846, December.
    4. Marcus R. Munafò & Brian A. Nosek & Dorothy V. M. Bishop & Katherine S. Button & Christopher D. Chambers & Nathalie Percie du Sert & Uri Simonsohn & Eric-Jan Wagenmakers & Jennifer J. Ware & John P. A, 2017. "A manifesto for reproducible science," Nature Human Behaviour, Nature, vol. 1(1), pages 1-9, January.
    5. Meertens Q.A. & Diks C.G.H. & van den Herik H.J. & Takes F.W., 2022. "Improving the Output Quality of Official Statistics Based on Machine Learning Algorithms," Journal of Official Statistics, Sciendo, vol. 38(2), pages 485-508, June.
    6. Andrews, Donald W K, 1986. "Stability Comparisons of Estimators," Econometrica, Econometric Society, vol. 54(5), pages 1207-1235, September.
    7. Monya Baker, 2016. "1,500 scientists lift the lid on reproducibility," Nature, Nature, vol. 533(7604), pages 452-454, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    2. William Arbour, 2021. "Can Recidivism be Prevented from Behind Bars? Evidence from a Behavioral Program," Working Papers tecipa-683, University of Toronto, Department of Economics.
    3. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    5. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    6. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Shonosuke Sugasawa & Hisashi Noma, 2021. "Efficient screening of predictive biomarkers for individual treatment selection," Biometrics, The International Biometric Society, vol. 77(1), pages 249-257, March.
    8. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    9. Stephen Jarvis & Olivier Deschenes & Akshaya Jha, 2022. "The Private and External Costs of Germany’s Nuclear Phase-Out," Journal of the European Economic Association, European Economic Association, vol. 20(3), pages 1311-1346.
    10. Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
    11. Hayakawa, Kazunobu & Keola, Souknilanh & Silaphet, Korrakoun & Yamanouchi, Kenta, 2022. "Estimating the impacts of international bridges on foreign firm locations: a machine learning approach," IDE Discussion Papers 847, Institute of Developing Economies, Japan External Trade Organization(JETRO).
    12. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    13. Naguib, Costanza, 2019. "Estimating the Heterogeneous Impact of the Free Movement of Persons on Relative Wage Mobility," Economics Working Paper Series 1903, University of St. Gallen, School of Economics and Political Science.
    14. Labro, Eva & Lang, Mark & Omartian, James D., 2023. "Predictive analytics and centralization of authority," Journal of Accounting and Economics, Elsevier, vol. 75(1).
    15. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    16. J. Michelle Brock & Ralph De Haas, 2023. "Discriminatory Lending: Evidence from Bankers in the Lab," American Economic Journal: Applied Economics, American Economic Association, vol. 15(2), pages 31-68, April.
    17. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    18. Frondel, Manuel & Kussel, Gerhard & Sommer, Stephan & Vance, Colin, 2019. "Local cost for global benefit: The case of wind turbines," Ruhr Economic Papers 791, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen, revised 2019.
    19. Xinkun Nie & Stefan Wager, 2017. "Quasi-Oracle Estimation of Heterogeneous Treatment Effects," Papers 1712.04912, arXiv.org, revised Aug 2020.
    20. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:astaws:v:17:y:2023:i:3:d:10.1007_s11943-023-00329-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.