IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v351y2025i2d10.1007_s10479-024-06216-w.html
   My bibliography  Save this article

Benchmarking in data envelopment analysis: balanced efforts to achieve realistic targets

Author

Listed:
  • Hernán P. Guevel

    (Miguel Hernández University of Elche
    Universidad Nacional de Córdoba)

  • Nuria Ramón

    (Miguel Hernández University of Elche)

  • Juan Aparicio

    (Miguel Hernández University of Elche
    valgrAI - Valencian Graduate School and Research Network of Artificial Intelligence)

Abstract

The minimum distance models have undoubtedly represented a significant advance for the establishment of targets in Data Envelopment Analysis (DEA). These models may help in defining improvement plans that require the least overall effort from the inefficient Decision Making Units (DMUs). Despite the advantages that come with Closest Targets, in some cases unsatisfactory results may be given, since improvement plans, even in that context, differ considerably from the actual performances. This generally occurs because all the effort employed to reach the efficient DEA frontier is channeled into just a few variables. In certain contexts these exorbitant efforts in some inputs/outputs become unapproachable. In fact, proposals for sequential improvement plans can be found in the literature. It could happen that the sequential improvement plans continue to be so demanding in some variable that it would be difficult to achieve such targets. We propose an alternative approach where the improvement plans require similar efforts in the different variables that participate in the analysis. In the absence of information about the limitations of improvement in the different inputs/outputs, we consider that a plausible and conservative solution would be the one where an equitable redistribution of efforts would be possible. In this paper, we propose different approaches with the aim of reaching an impartial distribution of efforts to achieve optimal operating levels without neglecting the overall effort required. Therefore, we offer different alternatives for planning improvements directed towards DEA efficient targets, where the decision-maker can choose the one that best suits their circumstances. Moreover, and as something new in the benchmarking DEA context, we will study which properties satisfy the targets generated by the different models proposed. Finally, an empirical example used in the literature serves to illustrate the methodology proposed.

Suggested Citation

  • Hernán P. Guevel & Nuria Ramón & Juan Aparicio, 2025. "Benchmarking in data envelopment analysis: balanced efforts to achieve realistic targets," Annals of Operations Research, Springer, vol. 351(2), pages 1403-1426, August.
  • Handle: RePEc:spr:annopr:v:351:y:2025:i:2:d:10.1007_s10479-024-06216-w
    DOI: 10.1007/s10479-024-06216-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06216-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06216-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Coelli, Tim & Grifell-Tatje, Emili & Perelman, Sergio, 2002. "Capacity utilisation and profitability: A decomposition of short-run profit efficiency," International Journal of Production Economics, Elsevier, vol. 79(3), pages 261-278, October.
    2. Alcaraz, Javier & Aparicio, Juan & Monge, Juan Fco & Ramón, Nuria, 2022. "Weight profiles in cross-efficiency evaluation based on hypervolume maximization," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    3. Aparicio, Juan & Monge, Juan F., 2022. "The generalized range adjusted measure in data envelopment analysis: Properties, computational aspects and duality," European Journal of Operational Research, Elsevier, vol. 302(2), pages 621-632.
    4. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "On the choice of weights profiles in cross-efficiency evaluations," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1564-1572, December.
    5. Cook, Wade D. & Ruiz, José L. & Sirvent, Inmaculada & Zhu, Joe, 2017. "Within-group common benchmarking using DEA," European Journal of Operational Research, Elsevier, vol. 256(3), pages 901-910.
    6. Fang, Lei, 2015. "Centralized resource allocation based on efficiency analysis for step-by-step improvement paths," Omega, Elsevier, vol. 51(C), pages 24-28.
    7. Zhu, Qingyuan & Wu, Jie & Ji, Xiang & Li, Feng, 2018. "A simple MILP to determine closest targets in non-oriented DEA model satisfying strong monotonicity," Omega, Elsevier, vol. 79(C), pages 1-8.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The weighted additive distance function," European Journal of Operational Research, Elsevier, vol. 254(1), pages 338-346.
    10. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    11. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    12. Aparicio, Juan & Cordero, Jose M. & Pastor, Jesus T., 2017. "The determination of the least distance to the strongly efficient frontier in Data Envelopment Analysis oriented models: Modelling and computational aspects," Omega, Elsevier, vol. 71(C), pages 1-10.
    13. Sebastián Lozano & Gabriel Villa, 2010. "Gradual technical and scale efficiency improvement in DEA," Annals of Operations Research, Springer, vol. 173(1), pages 123-136, January.
    14. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    15. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2010. "A multiplier bound approach to assess relative efficiency in DEA without slacks," European Journal of Operational Research, Elsevier, vol. 203(1), pages 261-269, May.
    16. A. Charnes & W. W. Cooper, 1962. "Programming with linear fractional functionals," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 9(3‐4), pages 181-186, September.
    17. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    18. Ruiz, José L. & Sirvent, Inmaculada, 2016. "Common benchmarking and ranking of units with DEA," Omega, Elsevier, vol. 65(C), pages 1-9.
    19. Cook, Wade D. & Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada & Zhu, Joe, 2019. "DEA-based benchmarking for performance evaluation in pay-for-performance incentive plans," Omega, Elsevier, vol. 84(C), pages 45-54.
    20. Nuria Ramón & José L. Ruiz & Inmaculada Sirvent, 2016. "On the Use of DEA Models with Weight Restrictions for Benchmarking and Target Setting," International Series in Operations Research & Management Science, in: Juan Aparicio & C. A. Knox Lovell & Jesus T. Pastor (ed.), Advances in Efficiency and Productivity, chapter 0, pages 149-180, Springer.
    21. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2020. "Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA," Omega, Elsevier, vol. 92(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    2. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    3. Fangqing Wei & Junfei Chu & Jiayun Song & Feng Yang, 2019. "A cross-bargaining game approach for direction selection in the directional distance function," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(3), pages 787-807, September.
    4. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2020. "Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA," Omega, Elsevier, vol. 92(C).
    5. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    6. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
    7. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    8. Hernán P. Guevel & Nuria Ramón & Juan Aparicio, 2025. "Benchmarking and Target Setting in Weight Restriction Context," Mathematics, MDPI, vol. 13(7), pages 1-28, April.
    9. Kao, Chiang, 2022. "A maximum slacks-based measure of efficiency for closed series production systems," Omega, Elsevier, vol. 106(C).
    10. Ji, Zhiyong & Wu, Xianhua & Chen, Xueli & Zhou, Wenzhuo & Song, Malin, 2023. "Finding green performance targets globally closest to management goals for ports experiencing similar circumstances," Resources Policy, Elsevier, vol. 85(PB).
    11. Aparicio, Juan & Monge, Juan F., 2022. "The generalized range adjusted measure in data envelopment analysis: Properties, computational aspects and duality," European Journal of Operational Research, Elsevier, vol. 302(2), pages 621-632.
    12. Somayeh Razipour-GhalehJough & Farhad Hosseinzadeh Lotfi & Gholamreza Jahanshahloo & Mohsen Rostamy-malkhalifeh & Hamid Sharafi, 2020. "Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 755-787, May.
    13. An, Qingxian & Zhang, Qiaoyu & Tao, Xiangyang, 2023. "Pay-for-performance incentives in benchmarking with quasi S-shaped technology," Omega, Elsevier, vol. 118(C).
    14. An, Qingxian & Tao, Xiangyang & Xiong, Beibei, 2021. "Benchmarking with data envelopment analysis: An agency perspective," Omega, Elsevier, vol. 101(C).
    15. Atwood, Joseph & Shaik, Saleem, 2020. "Theory and statistical properties of Quantile Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 286(2), pages 649-661.
    16. Díaz-Hernández, Juan José & Cova-Alonso, David-José & Martínez-Budría, Eduardo, 2025. "Measuring technical efficiency under variable returns to scale using Debreu's loss function," European Journal of Operational Research, Elsevier, vol. 323(3), pages 975-987.
    17. Aparicio, Juan & Cordero, Jose M. & Gonzalez, Martin & Lopez-Espin, Jose J., 2018. "Using non-radial DEA to assess school efficiency in a cross-country perspective: An empirical analysis of OECD countries," Omega, Elsevier, vol. 79(C), pages 9-20.
    18. Fukuyama, Hirofumi & Matousek, Roman & Tzeremes, Nickolaos G., 2022. "Bank production with nonperforming loans: A minimum distance directional slack inefficiency approach," Omega, Elsevier, vol. 113(C).
    19. José L. Ruiz & Diego Pastor & Jesús T. Pastor, 2013. "Assessing Professional Tennis Players Using Data Envelopment Analysis (DEA)," Journal of Sports Economics, , vol. 14(3), pages 276-302, June.
    20. Borrás, Fernando & Ruiz, José L. & Sirvent, Inmaculada, 2024. "Planning improvements through data envelopment analysis (DEA) benchmarking based on a selection of peers," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:351:y:2025:i:2:d:10.1007_s10479-024-06216-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.