IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i7p1175-d1626838.html
   My bibliography  Save this article

Benchmarking and Target Setting in Weight Restriction Context

Author

Listed:
  • Hernán P. Guevel

    (Center of Operations Research (CIO), PhD Program in Economics (DEcIDE), Miguel Hernández University of Elche, 03202 Elche, Spain
    Faculty of Economic Sciences, National University of Cordoba, Bv. Enrique Barros s/n Ciudad Universitaria, Córdoba X5000HRV, Argentina
    These authors contributed equally to this work.)

  • Nuria Ramón

    (Center of Operations Research (CIO), Miguel Hernández University of Elche. Avda. de la Universidad, s/n, 03202 Elche, Spain
    These authors contributed equally to this work.)

  • Juan Aparicio

    (Center of Operations Research (CIO), Miguel Hernández University of Elche. Avda. de la Universidad, s/n, 03202 Elche, Spain
    These authors contributed equally to this work.)

Abstract

Data Envelopment Analysis (DEA) models with weight restrictions (WRs) have proven valuable for benchmarking and target setting. Although the DEA literature has explored the incorporation of managerial preferences and value judgments regarding the relative worth of inputs and outputs, as well as the establishment of targets in benchmarking contexts, little attention has been devoted to target setting under restricted DEA models. Moreover, despite the significant advances offered by minimum distance models for target establishment, limited research has addressed benchmarking improvement plans that integrate expert opinions and prior knowledge. Some studies have examined minimum distance models constrained to the efficient Assurance Region (AR) frontier, primarily by extending the concept of closest targets under WR. In contrast, this paper develops improvement plans that deviate minimally from the closest target projection obtained from the original, unrestricted DEA model—termed the reference target . This reference target is considered an acceptable “peer” since it requires the least effort for a decision making unit (DMU) to reach optimal performance before incorporating WR. To this end, we developed a mixed-integer linear programming (MILP) model under the assumption of Variable Returns to Scale in DEA. The proposed approach is illustrated through an application to benchmarking the tourism performance of localities in Córdoba, Argentina. The results reveal realistic and achievable improvement plans for the analyzed localities, ensuring that both global efforts are managed and expert-imposed restrictions are satisfied.

Suggested Citation

  • Hernán P. Guevel & Nuria Ramón & Juan Aparicio, 2025. "Benchmarking and Target Setting in Weight Restriction Context," Mathematics, MDPI, vol. 13(7), pages 1-28, April.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1175-:d:1626838
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/7/1175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/7/1175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. V V Podinovski, 2004. "Production trade-offs and weight restrictions in data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(12), pages 1311-1322, December.
    2. Podinovski, V.V., 2007. "Computation of efficient targets in DEA models with production trade-offs and weight restrictions," European Journal of Operational Research, Elsevier, vol. 181(2), pages 586-591, September.
    3. Charnes, A. & Cooper, W. W. & Huang, Z. M. & Sun, D. B., 1990. "Polyhedral Cone-Ratio DEA Models with an illustrative application to large commercial banks," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 73-91.
    4. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    5. R. Allen & A. Athanassopoulos & R.G. Dyson & E. Thanassoulis, 1997. "Weights restrictions and value judgements in Data Envelopment Analysis: Evolution, development and future directions," Annals of Operations Research, Springer, vol. 73(0), pages 13-34, October.
    6. Ruiz, José L. & Segura, José V. & Sirvent, Inmaculada, 2015. "Benchmarking and target setting with expert preferences: An application to the evaluation of educational performance of Spanish universities," European Journal of Operational Research, Elsevier, vol. 242(2), pages 594-605.
    7. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    8. Podinovski, Victor V., 2016. "Optimal weights in DEA models with weight restrictions," European Journal of Operational Research, Elsevier, vol. 254(3), pages 916-924.
    9. Güner, Samet & Antunes, Jorge Junio Moreira & Seçkin Codal, Keziban & Wanke, Peter, 2024. "Network centrality driven airport efficiency: A weight-restricted network DEA," Journal of Air Transport Management, Elsevier, vol. 116(C).
    10. Ramón, Nuria & Ruiz, José L. & Sirvent, Inmaculada, 2020. "Cross-benchmarking for performance evaluation: Looking across best practices of different peer groups using DEA," Omega, Elsevier, vol. 92(C).
    11. Cook, Wade D. & Ruiz, José L. & Sirvent, Inmaculada & Zhu, Joe, 2017. "Within-group common benchmarking using DEA," European Journal of Operational Research, Elsevier, vol. 256(3), pages 901-910.
    12. Fernandes, Vicente Aprigliano & Pacheco, Ricardo Rodrigues & Fernandes, Elton, 2022. "A dynamic analysis of air transport and tourism in Brazil," Journal of Air Transport Management, Elsevier, vol. 105(C).
    13. Thanassoulis, E. & Dyson, R. G., 1992. "Estimating preferred target input-output levels using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 56(1), pages 80-97, January.
    14. Podinovski, V. V., 1999. "Side effects of absolute weight bounds in DEA models," European Journal of Operational Research, Elsevier, vol. 115(3), pages 583-595, June.
    15. Laura I Luna, 2022. "Application of PCA with georeferenced data in the tourism industry: A case study in the province of Córdoba, Argentina," Tourism Economics, , vol. 28(2), pages 559-579, March.
    16. Sebastián Lozano & Narges Soltani, 2020. "A modified discrete Raiffa approach for efficiency assessment and target setting," Annals of Operations Research, Springer, vol. 292(1), pages 71-95, September.
    17. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    18. Juan Aparicio & José Ruiz & Inmaculada Sirvent, 2007. "Closest targets and minimum distance to the Pareto-efficient frontier in DEA," Journal of Productivity Analysis, Springer, vol. 28(3), pages 209-218, December.
    19. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    20. Ruiz, José L. & Sirvent, Inmaculada, 2016. "Common benchmarking and ranking of units with DEA," Omega, Elsevier, vol. 65(C), pages 1-9.
    21. Juan Aparicio & Jose J. Lopez-Espin & Raul Martinez-Moreno & Jesus T. Pastor, 2014. "Benchmarking in Data Envelopment Analysis: An Approach Based on Genetic Algorithms and Parallel Programming," Advances in Operations Research, Hindawi, vol. 2014, pages 1-9, February.
    22. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somayeh Razipour-GhalehJough & Farhad Hosseinzadeh Lotfi & Gholamreza Jahanshahloo & Mohsen Rostamy-malkhalifeh & Hamid Sharafi, 2020. "Finding closest target for bank branches in the presence of weight restrictions using data envelopment analysis," Annals of Operations Research, Springer, vol. 288(2), pages 755-787, May.
    2. Ruiz, José L. & Sirvent, Inmaculada, 2019. "Performance evaluation through DEA benchmarking adjusted to goals," Omega, Elsevier, vol. 87(C), pages 150-157.
    3. Monge, Juan F. & Ruiz, José L., 2023. "Setting closer targets based on non-dominated convex combinations of Pareto-efficient units: A bi-level linear programming approach in Data Envelopment Analysis," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1084-1096.
    4. Finn Førsund, 2013. "Weight restrictions in DEA: misplaced emphasis?," Journal of Productivity Analysis, Springer, vol. 40(3), pages 271-283, December.
    5. Khalili, M. & Camanho, A.S. & Portela, M.C.A.S. & Alirezaee, M.R., 2010. "The measurement of relative efficiency using data envelopment analysis with assurance regions that link inputs and outputs," European Journal of Operational Research, Elsevier, vol. 203(3), pages 761-770, June.
    6. Podinovski, Victor V., 2016. "Optimal weights in DEA models with weight restrictions," European Journal of Operational Research, Elsevier, vol. 254(3), pages 916-924.
    7. Yang, Jian-Bo & Wong, Brandon Y.H. & Xu, Dong-Ling & Stewart, Theodor J., 2009. "Integrating DEA-oriented performance assessment and target setting using interactive MOLP methods," European Journal of Operational Research, Elsevier, vol. 195(1), pages 205-222, May.
    8. Ji, Zhiyong & Wu, Xianhua & Chen, Xueli & Zhou, Wenzhuo & Song, Malin, 2023. "Finding green performance targets globally closest to management goals for ports experiencing similar circumstances," Resources Policy, Elsevier, vol. 85(PB).
    9. Borrás, Fernando & Ruiz, José L. & Sirvent, Inmaculada, 2024. "Planning improvements through data envelopment analysis (DEA) benchmarking based on a selection of peers," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
    10. Podinovski, Victor V. & Bouzdine-Chameeva, Tatiana, 2016. "On single-stage DEA models with weight restrictions," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1044-1050.
    11. Le, Minh Hanh & Afsharian, Mohsen & Ahn, Heinz, 2021. "Inverse Frontier-based Benchmarking for Investigating the Efficiency and Achieving the Targets in the Vietnamese Education System," Omega, Elsevier, vol. 103(C).
    12. Kao, Chiang, 2024. "Maximum slacks-based measure of efficiency in network data envelopment analysis: A case of garment manufacturing," Omega, Elsevier, vol. 123(C).
    13. Podinovski, Victor V. & Bouzdine-Chameeva, Tatiana, 2015. "Consistent weight restrictions in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 244(1), pages 201-209.
    14. António J. R. Santos & Sérgio P. Santos & Carla A. F. Amado & Efigénio L. Rebelo & Júlio C. Mendes, 2020. "Labor inspectorates’ efficiency and effectiveness assessment as a learning path to improve work-related accident prevention," Annals of Operations Research, Springer, vol. 288(2), pages 609-651, May.
    15. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    16. Afsharian, Mohsen & Bogetoft, Peter, 2023. "Limiting flexibility in nonparametric efficiency evaluations: An ex post k-centroid clustering approach," European Journal of Operational Research, Elsevier, vol. 311(2), pages 633-647.
    17. Lins, Marcos Pereira Estellita & Sollero, Maria Karla Vervloet & Caloba, Guilherme Marques & da Silva, Angela Cristina Moreira, 2007. "Integrating the regulatory and utility firm perspectives, when measuring the efficiency of electricity distribution," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1413-1424, September.
    18. Victor V. Podinovski & Wan Rohaida Wan Husain, 2017. "The hybrid returns-to-scale model and its extension by production trade-offs: an application to the efficiency assessment of public universities in Malaysia," Annals of Operations Research, Springer, vol. 250(1), pages 65-84, March.
    19. Adler, Nicole & Friedman, Lea & Sinuany-Stern, Zilla, 2002. "Review of ranking methods in the data envelopment analysis context," European Journal of Operational Research, Elsevier, vol. 140(2), pages 249-265, July.
    20. Baris Yilmaz & Mehmet Yurdusev & Nilgun Harmancioglu, 2009. "The Assessment of Irrigation Efficiency in Buyuk Menderes Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(6), pages 1081-1095, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:7:p:1175-:d:1626838. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.