IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v337y2024i1d10.1007_s10479-024-05865-1.html
   My bibliography  Save this article

Robust portfolio optimization with fuzzy TODIM, genetic algorithm and multi-criteria constraints

Author

Listed:
  • Ameet Kumar Banerjee

    (XLRI -Xavier School of Management)

  • H. K. Pradhan

    (XLRI -Xavier School of Management)

  • Ahmet Sensoy

    (Bilkent University
    Lebanese American University)

  • Frank Fabozzi

    (Johns Hopkins University)

  • Biplab Mahapatra

    (XIM, XIM University)

Abstract

This paper adopts the multi-criterion decision-making model of fuzzy-TODIM and genetic algorithm (GA) for optimal portfolio allocation. We applied Markowitz’s portfolio parameters as inputs for the fuzzy TODIM model to rank stocks that are constituents of each index from three different markets. Portfolios are then generated dynamically using three weighting techniques and subject to multi-objective criteria and additional constraints. The results indicate a significant variation in performance metrics between the model-generated portfolios and the market indices. Replication of the procedure produces a similar outcome. Moreover, the out-of-sample tests conducted over 3 years validate the results’ robustness, indicating that fuzzy TODIM, combined with GA, can achieve superior performance in dynamic portfolio allocation.

Suggested Citation

  • Ameet Kumar Banerjee & H. K. Pradhan & Ahmet Sensoy & Frank Fabozzi & Biplab Mahapatra, 2024. "Robust portfolio optimization with fuzzy TODIM, genetic algorithm and multi-criteria constraints," Annals of Operations Research, Springer, vol. 337(1), pages 1-22, June.
  • Handle: RePEc:spr:annopr:v:337:y:2024:i:1:d:10.1007_s10479-024-05865-1
    DOI: 10.1007/s10479-024-05865-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-05865-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-05865-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ehrgott, Matthias & Klamroth, Kathrin & Schwehm, Christian, 2004. "An MCDM approach to portfolio optimization," European Journal of Operational Research, Elsevier, vol. 155(3), pages 752-770, June.
    2. Xidonas, Panagiotis & Mavrotas, George & Zopounidis, Constantin & Psarras, John, 2011. "IPSSIS: An integrated multicriteria decision support system for equity portfolio construction and selection," European Journal of Operational Research, Elsevier, vol. 210(2), pages 398-409, April.
    3. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    4. Vitali Alexeev & Mardi Dungey, 2015. "Equity portfolio diversification with high frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1205-1215, July.
    5. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    6. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    7. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. Petchrompo, Sanyapong & Wannakrairot, Anupong & Parlikad, Ajith Kumar, 2022. "Pruning Pareto optimal solutions for multi-objective portfolio asset management," European Journal of Operational Research, Elsevier, vol. 297(1), pages 203-220.
    10. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    11. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Dionisio, Andreia & Almeida, Dora & Sensoy, Ahmet, 2022. "Nonlinear nexus between cryptocurrency returns and COVID-19 news sentiment," Journal of Behavioral and Experimental Finance, Elsevier, vol. 36(C).
    12. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    13. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    14. Diaz-Balteiro, L & González-Pachón, J. & Romero, C., 2017. "Measuring systems sustainability with multi-criteria methods: A critical review," European Journal of Operational Research, Elsevier, vol. 258(2), pages 607-616.
    15. Banerjee, Ameet Kumar, 2021. "Futures market and the contagion effect of COVID-19 syndrome," Finance Research Letters, Elsevier, vol. 43(C).
    16. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    17. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    18. Bruce I. Jacobs & Kenneth N. Levy & Harry M. Markowitz, 2005. "Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions," Operations Research, INFORMS, vol. 53(4), pages 586-599, August.
    19. Ballestero, E. & Gunther, M. & Pla-Santamaria, D. & Stummer, C., 2007. "Portfolio selection under strict uncertainty: A multi-criteria methodology and its application to the Frankfurt and Vienna Stock Exchanges," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1476-1487, September.
    20. Hafner, Christian & Wang, Linqi, 2020. "Dynamic portfolio selection with sector-specific regularization," LIDAM Discussion Papers ISBA 2020032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    21. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
    22. Statman, Meir, 1987. "How Many Stocks Make a Diversified Portfolio?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(3), pages 353-363, September.
    23. Galagedera, Don U.A. & Fukuyama, Hirofumi & Watson, John & Tan, Eric K.M., 2020. "Do mutual fund managers earn their fees? New measures for performance appraisal," European Journal of Operational Research, Elsevier, vol. 287(2), pages 653-667.
    24. Roger Edelen & Richard Evans & Gregory Kadlec, 2013. "Shedding Light on “Invisible” Costs: Trading Costs and Mutual Fund Performance," Financial Analysts Journal, Taylor & Francis Journals, vol. 69(1), pages 33-44, January.
    25. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
    26. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    27. Ameet Kumar Banerjee, 2022. "You sneeze, and the markets are paranoid: the fear, uncertainty and distress sentiments impact of the COVID-19 pandemic on the stock–bond correlation," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 23(5), pages 652-668, September.
    28. Stefano Cavaglia & John Hua Fan & Zhenping Wang, 2022. "Portable Beta and Total Portfolio Management," Financial Analysts Journal, Taylor & Francis Journals, vol. 78(3), pages 49-69, July.
    29. Antti Petajisto, 2013. "Active Share and Mutual Fund Performance," Financial Analysts Journal, Taylor & Francis Journals, vol. 69(4), pages 73-93, July.
    30. Branke, J. & Scheckenbach, B. & Stein, M. & Deb, K. & Schmeck, H., 2009. "Portfolio optimization with an envelope-based multi-objective evolutionary algorithm," European Journal of Operational Research, Elsevier, vol. 199(3), pages 684-693, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salo, Ahti & Doumpos, Michalis & Liesiö, Juuso & Zopounidis, Constantin, 2024. "Fifty years of portfolio optimization," European Journal of Operational Research, Elsevier, vol. 318(1), pages 1-18.
    2. Liu, Weilong & Zhang, Yong & Liu, Kailong & Quinn, Barry & Yang, Xingyu & Peng, Qiao, 2023. "Evolutionary multi-objective optimisation for large-scale portfolio selection with both random and uncertain returns," QBS Working Paper Series 2023/02, Queen's University Belfast, Queen's Business School.
    3. Steuer, Ralph E. & Qi, Yue & Wimmer, Maximilian, 2024. "Computing cardinality constrained portfolio selection efficient frontiers via closest correlation matrices," European Journal of Operational Research, Elsevier, vol. 313(2), pages 628-636.
    4. Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.
    5. Mazin A.M. Al Janabi, 2021. "Is optimum always optimal? A revisit of the mean‐variance method under nonlinear measures of dependence and non‐normal liquidity constraints," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 387-415, April.
    6. Zsurkis, Gabriel & Nicolau, João & Rodrigues, Paulo M.M., 2024. "First passage times in portfolio optimization: A novel nonparametric approach," European Journal of Operational Research, Elsevier, vol. 312(3), pages 1074-1085.
    7. Gianni Filograsso & Giacomo Tollo, 2023. "Adaptive evolutionary algorithms for portfolio selection problems," Computational Management Science, Springer, vol. 20(1), pages 1-38, December.
    8. Jang Ho Kim & Yongjae Lee & Woo Chang Kim & Frank J. Fabozzi, 2022. "Goal-based investing based on multi-stage robust portfolio optimization," Annals of Operations Research, Springer, vol. 313(2), pages 1141-1158, June.
    9. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    10. Ameet Kumar Banerjee & HK Pradhan, 2024. "Did Precious Metals Serve as Hedge and Safe-haven Alternatives to Equity During the COVID-19 Pandemic: New Insights Using a Copula-based Approach," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 23(4), pages 399-423, December.
    11. Jingnan Chen & Gengling Dai & Ning Zhang, 2020. "An application of sparse-group lasso regularization to equity portfolio optimization and sector selection," Annals of Operations Research, Springer, vol. 284(1), pages 243-262, January.
    12. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    13. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    14. Gatzert, Nadine & Martin, Alexander & Schmidt, Martin & Seith, Benjamin & Vogl, Nikolai, 2021. "Portfolio optimization with irreversible long-term investments in renewable energy under policy risk: A mixed-integer multistage stochastic model and a moving-horizon approach," European Journal of Operational Research, Elsevier, vol. 290(2), pages 734-748.
    15. Janusz Miroforidis, 2021. "Bounds on efficient outcomes for large-scale cardinality-constrained Markowitz problems," Journal of Global Optimization, Springer, vol. 80(3), pages 617-634, July.
    16. Banerjee, Ameet Kumar & Akhtaruzzaman, Md & Sensoy, Ahmet & Goodell, John W., 2024. "Volatility spillovers and hedging strategies between impact investing and agricultural commodities," International Review of Financial Analysis, Elsevier, vol. 94(C).
    17. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    18. Akhtaruzzaman, Md & Banerjee, Ameet Kumar & Boubaker, Sabri & Moussa, Faten, 2023. "Does green improve portfolio optimisation?," Energy Economics, Elsevier, vol. 124(C).
    19. Paolo Giudici & Gloria Polinesi & Alessandro Spelta, 2022. "Network models to improve robot advisory portfolios," Annals of Operations Research, Springer, vol. 313(2), pages 965-989, June.
    20. Meade, N. & Beasley, J.E. & Adcock, C.J., 2021. "Quantitative portfolio selection: Using density forecasting to find consistent portfolios," European Journal of Operational Research, Elsevier, vol. 288(3), pages 1053-1067.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:337:y:2024:i:1:d:10.1007_s10479-024-05865-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.