IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v336y2024i1d10.1007_s10479-023-05233-5.html
   My bibliography  Save this article

Ergodic aspects of trading with threshold strategies

Author

Listed:
  • Attila Lovas

    (Alfréd Rényi Institute of Mathematics
    Budapest University of Technology and Economics)

  • Miklós Rásonyi

    (Alfréd Rényi Institute of Mathematics
    Eötvös Loránd University)

Abstract

To profit from price oscillations, investors frequently use threshold-type strategies where changes in the portfolio position are triggered by some indicators reaching prescribed levels. In this paper we investigate threshold-type strategies in the context of ergodic control. We make the first steps towards their optimization by proving ergodic properties of related functionals. Assuming Markovian price increments satisfying a minorization condition and (one-sided) boundedness we show, in particular, that for given thresholds, the distribution of the gains converges in the long run. We also extend recent results on the stability of overshoots of random walks from the i.i.d. increment case to Markovian increments, under suitable conditions.

Suggested Citation

  • Attila Lovas & Miklós Rásonyi, 2024. "Ergodic aspects of trading with threshold strategies," Annals of Operations Research, Springer, vol. 336(1), pages 691-709, May.
  • Handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05233-5
    DOI: 10.1007/s10479-023-05233-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-023-05233-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-023-05233-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Albert Shiryaev & Zuoquan Xu & Xun Yu Zhou, 2008. "Thou shalt buy and hold," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 765-776.
    2. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    3. Albert Shiryaev & Zuoquan Xu & Xun Yu Zhou, 2008. "Response to comment on 'Thou shalt buy and hold'," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 761-762.
    4. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    5. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Josselin Garnier & Knut Sølna, 2018. "Option pricing under fast-varying and rough stochastic volatility," Annals of Finance, Springer, vol. 14(4), pages 489-516, November.
    2. Eduardo Abi Jaber, 2022. "The characteristic function of Gaussian stochastic volatility models: an analytic expression," Finance and Stochastics, Springer, vol. 26(4), pages 733-769, October.
    3. Dima, Bogdan & Dima, Ştefana Maria & Ioan, Roxana, 2025. "The short-run impact of investor expectations’ past volatility on current predictions: The case of VIX," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 98(C).
    4. Kei Nakagawa & Yusuke Uchiyama, 2020. "GO-GJRSK Model with Application to Higher Order Risk-Based Portfolio," Mathematics, MDPI, vol. 8(11), pages 1-12, November.
    5. Sabri Boubaker & Zhenya Liu & Yaosong Zhan, 2022. "Risk management for crude oil futures: an optimal stopping-timing approach," Annals of Operations Research, Springer, vol. 313(1), pages 9-27, June.
    6. Takaishi, Tetsuya, 2025. "Multifractality and sample size influence on Bitcoin volatility patterns," Finance Research Letters, Elsevier, vol. 74(C).
    7. Nader Karimi & Hirbod Assa & Erfan Salavati & Hojatollah Adibi, 2023. "Calibration of Storage Model by Multi-Stage Statistical and Machine Learning Methods," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1437-1455, December.
    8. Satya Majumdar & Jean-Philippe Bouchaud, 2008. "Optimal time to sell a stock in the Black-Scholes model: comment on 'Thou shalt buy and hold', by A. Shiryaev, Z. Xu and X.Y. Zhou," Quantitative Finance, Taylor & Francis Journals, vol. 8(8), pages 753-760.
    9. Arcand, Jean-Louis & Hongler, Max-Olivier & Rinaldo, Daniele, 2020. "Increasing risk: Dynamic mean-preserving spreads," Journal of Mathematical Economics, Elsevier, vol. 86(C), pages 69-82.
    10. Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Aug 2025.
    11. Raul Merino & Jan Posp'iv{s}il & Tom'av{s} Sobotka & Tommi Sottinen & Josep Vives, 2019. "Decomposition formula for rough Volterra stochastic volatility models," Papers 1906.07101, arXiv.org, revised Aug 2019.
    12. Yue Liu & Aijun Yang & Jijian Zhang & Jingjing Yao, 2020. "An Optimal Stopping Problem of Detecting Entry Points for Trading Modeled by Geometric Brownian Motion," Computational Economics, Springer;Society for Computational Economics, vol. 55(3), pages 827-843, March.
    13. R. Vilela Mendes, 2022. "The fractional volatility model and rough volatility," Papers 2206.02205, arXiv.org.
    14. Tim Leung & Xin Li & Zheng Wang, 2015. "Optimal Multiple Trading Times Under the Exponential OU Model with Transaction Costs," Papers 1504.04682, arXiv.org.
    15. Min Dai & Zhou Yang & Qing Zhang & Qiji Jim Zhu, 2016. "Optimal Trend Following Trading Rules," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 626-642, May.
    16. Tetsuya Takaishi, 2019. "Rough volatility of Bitcoin," Papers 1904.12346, arXiv.org.
    17. Inoua, Sabiou M. & Smith, Vernon L., 2023. "A classical model of speculative asset price dynamics," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    18. Jordan Mann & J. Nathan Kutz, 2016. "Dynamic mode decomposition for financial trading strategies," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1643-1655, November.
    19. Alessandro Bondi & Sergio Pulido & Simone Scotti, 2022. "The rough Hawkes Heston stochastic volatility model," Papers 2210.12393, arXiv.org.
    20. Zuo Quan Xu & Fahuai Yi, 2019. "Optimal redeeming strategy of stock loans under drift uncertainty," Papers 1901.06680, arXiv.org.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:336:y:2024:i:1:d:10.1007_s10479-023-05233-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.