IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v324y2023i1d10.1007_s10479-021-04463-9.html
   My bibliography  Save this article

Sustainable supply chain network design: a study of the Colombian dairy sector

Author

Listed:
  • Carlos A. Moreno-Camacho

    (Universidad de La Sabana
    Kedge Business School
    Institut Henri Fayol)

  • Jairo R. Montoya-Torres

    (Universidad de La Sabana)

  • Anicia Jaegler

    (Kedge Business School
    Institut Henri Fayol)

Abstract

The literature review shows research gaps into the food supply chain design. In that context, this paper deals with the design of a sustainable supply chain. A multi-objective mixed-integer linear programming model includes four decisions and three sustainable criteria (economic—total network costs—, environmental—carbon emissions—, and social—work conditions and societal development—). The model aims to determine the optimal location and capacity of processing and distribution facilities, to choose the suppliers from a set of potential candidates, to determine transportation modes between all the actors, and to define the quantity of product, in order to satisfy the demand of dairy products in a set of regions. The applicability of the model is tested in a realistic case in the dairy sector in the central region of Colombia. The results show the existent trade-offs between the three dimensions of sustainability. The unweighted balance results, giving more priority to the social dimension, which obtains the least deviation, affecting the environmental performance of the chain. The analysis carried out in this paper does help decision-makers that will have at hand a set of possible configurations to be chosen in order to comply with environmental and social regulations without neglecting economic performance.

Suggested Citation

  • Carlos A. Moreno-Camacho & Jairo R. Montoya-Torres & Anicia Jaegler, 2023. "Sustainable supply chain network design: a study of the Colombian dairy sector," Annals of Operations Research, Springer, vol. 324(1), pages 573-599, May.
  • Handle: RePEc:spr:annopr:v:324:y:2023:i:1:d:10.1007_s10479-021-04463-9
    DOI: 10.1007/s10479-021-04463-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04463-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04463-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeedeh Anvari & Metin Turkay, 2017. "The facility location problem from the perspective of triple bottom line accounting of sustainability," International Journal of Production Research, Taylor & Francis Journals, vol. 55(21), pages 6266-6287, November.
    2. Kannan Govindan & P.C. Jha & Kiran Garg, 2016. "Product recovery optimization in closed-loop supply chain to improve sustainability in manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1463-1486, March.
    3. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    4. Marcus Brandenburg, 2015. "Low carbon supply chain configuration for a new product – a goal programming approach," International Journal of Production Research, Taylor & Francis Journals, vol. 53(21), pages 6588-6610, November.
    5. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    6. Beske, Philip & Land, Anna & Seuring, Stefan, 2014. "Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature," International Journal of Production Economics, Elsevier, vol. 152(C), pages 131-143.
    7. Tordecilla-Madera, Rafael & Polo, Andrés & Muñoz, Dairo & González-Rodríguez, Leonardo, 2017. "A robust design for a Colombian dairy cooperative's milk storage and refrigeration logistics system using binary programming," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 710-720.
    8. Abdul Salam Khan & Catalin Iulian Pruncu & Razaullah Khan & Khawar Naeem & Abdul Ghaffar & Pakeeza Ashraf & Shah Room, 2020. "A Trade-off Analysis of Economic and Environmental Aspects of a Disruption Based Closed-Loop Supply Chain Network," Sustainability, MDPI, vol. 12(17), pages 1-28, August.
    9. Dylan Jones & Mehrdad Tamiz, 2010. "Goal Programming Variants," International Series in Operations Research & Management Science, in: Practical Goal Programming, edition 1, chapter 0, pages 11-22, Springer.
    10. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    11. Cambero, Claudia & Sowlati, Taraneh, 2016. "Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 178(C), pages 721-735.
    12. Behnam Fahimnia & Joseph Sarkis & Angappa Gunasekaran & Reza Farahani, 2017. "Decision models for sustainable supply chain design and management," Annals of Operations Research, Springer, vol. 250(2), pages 277-278, March.
    13. Alexandre Dolgui & Dmitry Ivanov & Suresh P. Sethi & Boris Sokolov, 2019. "Scheduling in production, supply chain and Industry 4.0 systems by optimal control: fundamentals, state-of-the-art and applications," International Journal of Production Research, Taylor & Francis Journals, vol. 57(2), pages 411-432, January.
    14. Matthias Ehrgott & Margaret M. Wiecek, 2005. "Mutiobjective Programming," International Series in Operations Research & Management Science, in: Multiple Criteria Decision Analysis: State of the Art Surveys, chapter 0, pages 667-708, Springer.
    15. Shazia Ghufran & Saman Khowaja & M.J. Ahsan, 2015. "Optimum multivariate stratified double sampling design: Chebyshev's Goal Programming approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1032-1042, May.
    16. Asadi, Ehsan & Habibi, Farhad & Nickel, Stefan & Sahebi, Hadi, 2018. "A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain," Applied Energy, Elsevier, vol. 228(C), pages 2235-2261.
    17. Rohmer, S.U.K. & Gerdessen, J.C. & Claassen, G.D.H., 2019. "Sustainable supply chain design in the food system with dietary considerations: A multi-objective analysis," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1149-1164.
    18. Yan Fang & Yiping Jiang & Lijun Sun & Xingxing Han, 2018. "Design of Green Cold Chain Networks for Imported Fresh Agri-Products in Belt and Road Development," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    19. Zakeri, Atefe & Dehghanian, Farzad & Fahimnia, Behnam & Sarkis, Joseph, 2015. "Carbon pricing versus emissions trading: A supply chain planning perspective," International Journal of Production Economics, Elsevier, vol. 164(C), pages 197-205.
    20. Hamid Afshari & Masoud Sharafi & Tarek Y. ElMekkawy & Qingjin Peng, 2016. "Multi-objective optimisation of facility location decisions within integrated forward/reverse logistics under uncertainty," International Journal of Business Performance and Supply Chain Modelling, Inderscience Enterprises Ltd, vol. 8(3), pages 250-276.
    21. Mota, Bruna & Gomes, Maria Isabel & Carvalho, Ana & Barbosa-Povoa, Ana Paula, 2018. "Sustainable supply chains: An integrated modeling approach under uncertainty," Omega, Elsevier, vol. 77(C), pages 32-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Somsai, Thanatporn & Pongcharoen, Pupong & Hicks, Christian, 2024. "Optimizing sustainable multimodal distribution networks in the context of carbon pricing, with a case study in the Thai sugar industry," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tautenhain, Camila P.S. & Barbosa-Povoa, Ana Paula & Mota, Bruna & Nascimento, Mariá C.V., 2021. "An efficient Lagrangian-based heuristic to solve a multi-objective sustainable supply chain problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 70-90.
    2. Lukas Messmann & Lars Wietschel & Andrea Thorenz & Axel Tuma, 2023. "Assessing the social dimension in strategic network optimization for a sustainable development: The case of bioethanol production in the EU," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 760-776, June.
    3. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.
    4. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes & Tan Yigitcanlar, 2021. "Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review," Sustainability, MDPI, vol. 13(24), pages 1-31, December.
    5. Martins, C.L. & Melo, M.T. & Pato, M.V., 2019. "Redesigning a food bank supply chain network in a triple bottom line context," International Journal of Production Economics, Elsevier, vol. 214(C), pages 234-247.
    6. Volha Yakavenka & Ioannis Mallidis & Dimitrios Vlachos & Eleftherios Iakovou & Zafeiriou Eleni, 2020. "Development of a multi-objective model for the design of sustainable supply chains: the case of perishable food products," Annals of Operations Research, Springer, vol. 294(1), pages 593-621, November.
    7. Becker, Tristan & Wolff, Michael & Linzenich, Anika & Engelmann, Linda & Arning, Katrin & Ziefle, Martina & Walther, Grit, 2024. "An integrated bi-objective optimization model accounting for the social acceptance of renewable fuel production networks," European Journal of Operational Research, Elsevier, vol. 315(1), pages 354-367.
    8. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    9. Mariana Toussaint & Pablo Cabanelas & Pilar Muñoz-Dueñas, 2022. "Social sustainability in the food value chain: what is and how to adopt an integrative approach?," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2477-2500, August.
    10. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    11. Guo, Yuhan & Yu, Junyu & Allaoui, Hamid & Choudhary, Alok, 2022. "Lateral collaboration with cost-sharing in sustainable supply chain optimisation: A combinatorial framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    12. Taghikhah, Firouzeh & Voinov, Alexey & Shukla, Nagesh & Filatova, Tatiana & Anufriev, Mikhail, 2021. "Integrated modeling of extended agro-food supply chains: A systems approach," European Journal of Operational Research, Elsevier, vol. 288(3), pages 852-868.
    13. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    14. Aijun Liu & Yan Zhang & Senhao Luo & Jie Miao, 2020. "Dual-Channel Global Closed-Loop Supply Chain Network Optimization Based on Random Demand and Recovery Rate," IJERPH, MDPI, vol. 17(23), pages 1-32, November.
    15. Qian Dai & Jiaqi Yang & Dong Li, 2018. "Modeling a Three-Mode Hybrid Port-Hinterland Freight Intermodal Distribution Network with Environmental Consideration: The Case of the Yangtze River Economic Belt in China," Sustainability, MDPI, vol. 10(9), pages 1-26, August.
    16. Chia-Nan Wang & Nhat-Luong Nhieu & Yu-Chi Chung & Huynh-Tram Pham, 2021. "Multi-Objective Optimization Models for Sustainable Perishable Intermodal Multi-Product Networks with Delivery Time Window," Mathematics, MDPI, vol. 9(4), pages 1-25, February.
    17. Hongtao Ren & Wenji Zhou & Marek Makowski & Hongbin Yan & Yadong Yu & Tieju Ma, 2021. "Incorporation of life cycle emissions and carbon price uncertainty into the supply chain network management of PVC production," Annals of Operations Research, Springer, vol. 300(2), pages 601-620, May.
    18. Najafi, Mehdi & Zolfagharinia, Hossein, 2024. "A Multi-objective integrated approach to address sustainability in a meat supply chain," Omega, Elsevier, vol. 124(C).
    19. Suzanne, Elodie & Absi, Nabil & Borodin, Valeria, 2020. "Towards circular economy in production planning: Challenges and opportunities," European Journal of Operational Research, Elsevier, vol. 287(1), pages 168-190.
    20. Ehsan Shekarian & Behrang Ijadi & Amirreza Zare & Jukka Majava, 2022. "Sustainable Supply Chain Management: A Comprehensive Systematic Review of Industrial Practices," Sustainability, MDPI, vol. 14(13), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:324:y:2023:i:1:d:10.1007_s10479-021-04463-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.