IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v294y2021i1p70-90.html
   My bibliography  Save this article

An efficient Lagrangian-based heuristic to solve a multi-objective sustainable supply chain problem

Author

Listed:
  • Tautenhain, Camila P.S.
  • Barbosa-Povoa, Ana Paula
  • Mota, Bruna
  • Nascimento, Mariá C.V.

Abstract

Sustainable Supply Chain (SSC) management aims at integrating economic, environmental and social goals to assist in the long-term planning of a company and its supply chains. There is no consensus in the literature as to whether social and environmental responsibilities are profit-compatible. However, the conflicting nature of these goals is explicit when considering specific assessment measures and, in this scenario, multi-objective optimization is a way to represent problems that simultaneously optimize the goals. This paper proposes a Lagrangian matheuristic method, called AugMathLagr, to solve a hard and relevant multi-objective problem found in the literature. AugMathLagr was extensively tested using artificial instances defined by a generator presented in this paper. The results show a competitive performance of AugMathLagr when compared with an exact multi-objective method limited by time and a matheuristic recently proposed in the literature and adapted here to address the studied problem. In addition, computational results on a case study are presented and analyzed, and demonstrate the outstanding performance of AugMathLagr.

Suggested Citation

  • Tautenhain, Camila P.S. & Barbosa-Povoa, Ana Paula & Mota, Bruna & Nascimento, Mariá C.V., 2021. "An efficient Lagrangian-based heuristic to solve a multi-objective sustainable supply chain problem," European Journal of Operational Research, Elsevier, vol. 294(1), pages 70-90.
  • Handle: RePEc:eee:ejores:v:294:y:2021:i:1:p:70-90
    DOI: 10.1016/j.ejor.2021.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721000102
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    2. Vinay Gonela & Dalila Salazar & Jun Zhang & Atif Osmani & Iddrisu Awudu & Barbara Altman, 2019. "Designing a sustainable stochastic electricity generation network with hybrid production strategies," International Journal of Production Research, Taylor & Francis Journals, vol. 57(8), pages 2304-2326, April.
    3. Mohammad Hossein Zavvar Sabegh & Mohammad Mohammadi & Bahman Naderi, 2017. "Multi-objective optimization considering quality concepts in a green healthcare supply chain for natural disaster response: neural network approaches," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1689-1703, November.
    4. Eskandarpour, Majid & Dejax, Pierre & Miemczyk, Joe & Péton, Olivier, 2015. "Sustainable supply chain network design: An optimization-oriented review," Omega, Elsevier, vol. 54(C), pages 11-32.
    5. Martins, C.L. & Melo, M.T. & Pato, M.V., 2019. "Redesigning a food bank supply chain network in a triple bottom line context," International Journal of Production Economics, Elsevier, vol. 214(C), pages 234-247.
    6. Chávez, Marcela María Morales & Sarache, William & Costa, Yasel, 2018. "Towards a comprehensive model of a biofuel supply chain optimization from coffee crop residues," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 136-162.
    7. Eskigun, Erdem & Uzsoy, Reha & Preckel, Paul V. & Beaujon, George & Krishnan, Subramanian & Tew, Jeffrey D., 2005. "Outbound supply chain network design with mode selection, lead times and capacitated vehicle distribution centers," European Journal of Operational Research, Elsevier, vol. 165(1), pages 182-206, August.
    8. Saeid Rezaei & Amirsaman Kheirkhah, 2018. "A comprehensive approach in designing a sustainable closed-loop supply chain network using cross-docking operations," Computational and Mathematical Organization Theory, Springer, vol. 24(1), pages 51-98, March.
    9. Varsei, Mohsen & Polyakovskiy, Sergey, 2017. "Sustainable supply chain network design: A case of the wine industry in Australia," Omega, Elsevier, vol. 66(PB), pages 236-247.
    10. Cambero, Claudia & Sowlati, Taraneh, 2016. "Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 178(C), pages 721-735.
    11. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    12. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    13. Devika, K. & Jafarian, A. & Nourbakhsh, V., 2014. "Designing a sustainable closed-loop supply chain network based on triple bottom line approach: A comparison of metaheuristics hybridization techniques," European Journal of Operational Research, Elsevier, vol. 235(3), pages 594-615.
    14. Pishvaee, M.S. & Razmi, J. & Torabi, S.A., 2014. "An accelerated Benders decomposition algorithm for sustainable supply chain network design under uncertainty: A case study of medical needle and syringe supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 14-38.
    15. Mota, Bruna & Gomes, Maria Isabel & Carvalho, Ana & Barbosa-Povoa, Ana Paula, 2018. "Sustainable supply chains: An integrated modeling approach under uncertainty," Omega, Elsevier, vol. 77(C), pages 32-57.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dillon, Mary & Vauhkonen, Ilmari & Arvas, Mikko & Ihalainen, Jarkko & Vilkkumaa, Eeva & Oliveira, Fabricio, 2023. "Supporting platelet inventory management decisions: What is the effect of extending platelets’ shelf life?," European Journal of Operational Research, Elsevier, vol. 310(2), pages 640-654.
    2. Wolff, Michael & Becker, Tristan & Walther, Grit, 2023. "Long-term design and analysis of renewable fuel supply chains – An integrated approach considering seasonal resource availability," European Journal of Operational Research, Elsevier, vol. 304(2), pages 745-762.
    3. Shabnam Rekabi & Ali Ghodratnama & Amir Azaron, 2022. "Designing pharmaceutical supply chain networks with perishable items considering congestion," Operational Research, Springer, vol. 22(4), pages 4159-4219, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carlos A. Moreno-Camacho & Jairo R. Montoya-Torres & Anicia Jaegler, 2023. "Sustainable supply chain network design: a study of the Colombian dairy sector," Annals of Operations Research, Springer, vol. 324(1), pages 573-599, May.
    2. Becker, Tristan & Wolff, Michael & Linzenich, Anika & Engelmann, Linda & Arning, Katrin & Ziefle, Martina & Walther, Grit, 2024. "An integrated bi-objective optimization model accounting for the social acceptance of renewable fuel production networks," European Journal of Operational Research, Elsevier, vol. 315(1), pages 354-367.
    3. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    4. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    5. Sadjady Naeeni, Hannan & Sabbaghi, Navid, 2022. "Sustainable supply chain network design: A case of the glass manufacturer in Asia," International Journal of Production Economics, Elsevier, vol. 248(C).
    6. Luttiely Santos Oliveira & Ricardo Luiz Machado, 2021. "Application of optimization methods in the closed-loop supply chain: a literature review," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 357-400, February.
    7. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    8. Martins, C.L. & Melo, M.T. & Pato, M.V., 2019. "Redesigning a food bank supply chain network in a triple bottom line context," International Journal of Production Economics, Elsevier, vol. 214(C), pages 234-247.
    9. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    10. Kim, Yun Geon & Chung, Byung Do, 2022. "Closed-loop supply chain network design considering reshoring drivers," Omega, Elsevier, vol. 109(C).
    11. Mariana Toussaint & Pablo Cabanelas & Pilar Muñoz-Dueñas, 2022. "Social sustainability in the food value chain: what is and how to adopt an integrative approach?," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(4), pages 2477-2500, August.
    12. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    13. Potrč, Sanja & Čuček, Lidija & Martin, Mariano & Kravanja, Zdravko, 2021. "Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    15. YoungSu Yun & Anudari Chuluunsukh & Mitsuo Gen, 2020. "Sustainable Closed-Loop Supply Chain Design Problem: A Hybrid Genetic Algorithm Approach," Mathematics, MDPI, vol. 8(1), pages 1-19, January.
    16. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    17. Chamari Pamoshika Jayarathna & Duzgun Agdas & Les Dawes & Tan Yigitcanlar, 2021. "Multi-Objective Optimization for Sustainable Supply Chain and Logistics: A Review," Sustainability, MDPI, vol. 13(24), pages 1-31, December.
    18. Battaïa, Olga & Guillaume, Romain & Krug, Zoé & Oloruntoba, Richard, 2023. "Environmental and social equity in network design of sustainable closed-loop supply chains," International Journal of Production Economics, Elsevier, vol. 264(C).
    19. Jyoti Dhingra Darbari & Devika Kannan & Vernika Agarwal & P. C. Jha, 2019. "Fuzzy criteria programming approach for optimising the TBL performance of closed loop supply chain network design problem," Annals of Operations Research, Springer, vol. 273(1), pages 693-738, February.
    20. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:294:y:2021:i:1:p:70-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.