IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v294y2020i1d10.1007_s10479-019-03188-0.html
   My bibliography  Save this article

Default avoidance on credit card portfolios using accounting, demographical and exploratory factors: decision making based on machine learning (ML) techniques

Author

Listed:
  • Nikolaos Sariannidis

    (Western Macedonia University οf Applied Sciences)

  • Stelios Papadakis

    (Technological Educational Institute of Crete)

  • Alexandros Garefalakis

    (Technological Educational Institute of Crete)

  • Christos Lemonakis

    (Technological Educational Institute of Crete)

  • Tsioptsia Kyriaki-Argyro

    (Western Macedonia University οf Applied Sciences)

Abstract

Effective and thorough credit-risk management is a key factor for lending institutions, as significant financial losses can arise from the borrowers’ default. Consequently, machine learning methods can measure and analyze credit risk objectively when at the same time they face increasingly attention. This study analyzes default payment data from a credit cards’ portfolio containing some 30,000 clients from Taiwan with twenty-three attributes and with no missing information. We compare prediction accuracy of seven classification methods used, i.e. KNN, Logistic Regression, Naïve Bayes, Decision Trees, Random Forest, SVC, and Linear SVC. The results indicate that only few out of most of the typical variables used can adequately analyze default characteristics in terms of lending decisions. The results provide effective feedback to credit evaluators, lending institutions and business analysts for in-depth analysis. Also, they mention to the importance of the precautionary borrowing techniques to be used to better understand credit-card borrowers’ behavior, along with specific accounting, historical and demographical characteristics.

Suggested Citation

  • Nikolaos Sariannidis & Stelios Papadakis & Alexandros Garefalakis & Christos Lemonakis & Tsioptsia Kyriaki-Argyro, 2020. "Default avoidance on credit card portfolios using accounting, demographical and exploratory factors: decision making based on machine learning (ML) techniques," Annals of Operations Research, Springer, vol. 294(1), pages 715-739, November.
  • Handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03188-0
    DOI: 10.1007/s10479-019-03188-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03188-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03188-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shigeyuki Hamori & Minami Kawai & Takahiro Kume & Yuji Murakami & Chikara Watanabe, 2018. "Ensemble Learning or Deep Learning? Application to Default Risk Analysis," JRFM, MDPI, vol. 11(1), pages 1-14, March.
    2. Khandani, Amir E. & Kim, Adlar J. & Lo, Andrew W., 2010. "Consumer credit-risk models via machine-learning algorithms," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2767-2787, November.
    3. Srinivasan, Venkat & Kim, Yong H, 1987. "Credit Granting: A Comparative Analysis of Classification Procedures," Journal of Finance, American Finance Association, vol. 42(3), pages 665-681, July.
    4. Lee, Tian-Shyug & Chiu, Chih-Chou & Chou, Yu-Chao & Lu, Chi-Jie, 2006. "Mining the customer credit using classification and regression tree and multivariate adaptive regression splines," Computational Statistics & Data Analysis, Elsevier, vol. 50(4), pages 1113-1130, February.
    5. Yong Shi & Yi Peng & Gang Kou & Zhengxin Chen, 2005. "Classifying Credit Card Accounts For Business Intelligence And Decision Making: A Multiple-Criteria Quadratic Programming Approach," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 581-599.
    6. Jing He & Xiantao Liu & Yong Shi & Weixuan Xu & Nian Yan, 2004. "Classifications Of Credit Cardholder Behavior By Using Fuzzy Linear Programming," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 633-650.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manjeevan Seera & Chee Peng Lim & Ajay Kumar & Lalitha Dhamotharan & Kim Hua Tan, 2024. "An intelligent payment card fraud detection system," Annals of Operations Research, Springer, vol. 334(1), pages 445-467, March.
    2. Apostolos G. Katsafados & Dimitris Anastasiou, 2024. "Short-term prediction of bank deposit flows: do textual features matter?," Annals of Operations Research, Springer, vol. 338(2), pages 947-972, July.
    3. Liukai Wang & Fu Jia & Lujie Chen & Qifa Xu, 2023. "Forecasting SMEs’ credit risk in supply chain finance with a sampling strategy based on machine learning techniques," Annals of Operations Research, Springer, vol. 331(1), pages 1-33, December.
    4. Wang, Weiqing & Chen, Yuxi & Wang, Liukai & Xiong, Yu, 2025. "Developing the value of legal judgments of supply chain finance for credit risk prediction through novel ACWGAN-GPSA approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 196(C).
    5. Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).
    6. Mohammad Mahbobi & Salman Kimiagari & Marriappan Vasudevan, 2023. "Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks," Annals of Operations Research, Springer, vol. 330(1), pages 609-637, November.
    7. Dawen Yan & Xiaohui Zhang & Mingzheng Wang, 2021. "A robust bank asset allocation model integrating credit-rating migration risk and capital adequacy ratio regulations," Annals of Operations Research, Springer, vol. 299(1), pages 659-710, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin Leo & Suneel Sharma & K. Maddulety, 2019. "Machine Learning in Banking Risk Management: A Literature Review," Risks, MDPI, vol. 7(1), pages 1-22, March.
    2. Parisa Golbayani & Ionuc{t} Florescu & Rupak Chatterjee, 2020. "A comparative study of forecasting Corporate Credit Ratings using Neural Networks, Support Vector Machines, and Decision Trees," Papers 2007.06617, arXiv.org.
    3. Pérez-Martín, A. & Pérez-Torregrosa, A. & Vaca, M., 2018. "Big Data techniques to measure credit banking risk in home equity loans," Journal of Business Research, Elsevier, vol. 89(C), pages 448-454.
    4. Golbayani, Parisa & Florescu, Ionuţ & Chatterjee, Rupak, 2020. "A comparative study of forecasting corporate credit ratings using neural networks, support vector machines, and decision trees," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    5. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    6. Wosnitza, Jan Henrik, 2022. "Calibration alternatives to logistic regression and their potential for transferring the dispersion of discriminatory power into uncertainties of probabilities of default," Discussion Papers 04/2022, Deutsche Bundesbank.
    7. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    8. Apostolos Ampountolas & Titus Nyarko Nde & Paresh Date & Corina Constantinescu, 2021. "A Machine Learning Approach for Micro-Credit Scoring," Risks, MDPI, vol. 9(3), pages 1-20, March.
    9. Davidescu Adriana AnaMaria & Agafiței Marina-Diana & Strat Vasile Alecsandru & Dima Alina Mihaela, 2024. "Mapping the Landscape: A Bibliometric Analysis of Rating Agencies in the Era of Artificial Intelligence and Machine Learning," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 67-85.
    10. Tobias Götze & Marc Gürtler & Eileen Witowski, 2020. "Improving CAT bond pricing models via machine learning," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 428-446, September.
    11. Haider A. Khan, 2004. "General Conclusions: From Crisis to a Global Political Economy of Freedom," Palgrave Macmillan Books, in: Global Markets and Financial Crises in Asia, chapter 9, pages 193-211, Palgrave Macmillan.
    12. Christa Gibbs & Benedict Guttman-Kenney & Donghoon Lee & Scott Nelson & Wilbert van der Klaauw & Jialan Wang, 2025. "Consumer Credit Reporting Data," Journal of Economic Literature, American Economic Association, vol. 63(2), pages 598-636, June.
    13. Serrano-Cinca, Carlos & Gutiérrez-Nieto, Begoña & Bernate-Valbuena, Martha, 2019. "The use of accounting anomalies indicators to predict business failure," European Management Journal, Elsevier, vol. 37(3), pages 353-375.
    14. Gunnarsson, Björn Rafn & vanden Broucke, Seppe & Baesens, Bart & Óskarsdóttir, María & Lemahieu, Wilfried, 2021. "Deep learning for credit scoring: Do or don’t?," European Journal of Operational Research, Elsevier, vol. 295(1), pages 292-305.
    15. Roy Cerqueti & Francesca Pampurini & Annagiulia Pezzola & Anna Grazia Quaranta, 2022. "Dangerous liasons and hot customers for banks," Review of Quantitative Finance and Accounting, Springer, vol. 59(1), pages 65-89, July.
    16. Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis, 2019. "Forecasting transportation demand for the U.S. market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 195-214.
    17. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    18. Jung-sik Hong & Hyeongyu Yeo & Nam-Wook Cho & Taeuk Ahn, 2018. "Identification of Core Suppliers Based on E-Invoice Data Using Supervised Machine Learning," JRFM, MDPI, vol. 11(4), pages 1-13, October.
    19. Peter Martey Addo & Dominique Guegan & Bertrand Hassani, 2018. "Credit Risk Analysis Using Machine and Deep Learning Models," Risks, MDPI, vol. 6(2), pages 1-20, April.
    20. Fraisse, Henri & Laporte, Matthias, 2022. "Return on investment on artificial intelligence: The case of bank capital requirement," Journal of Banking & Finance, Elsevier, vol. 138(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:294:y:2020:i:1:d:10.1007_s10479-019-03188-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.