IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v334y2024i1d10.1007_s10479-021-04149-2.html
   My bibliography  Save this article

An intelligent payment card fraud detection system

Author

Listed:
  • Manjeevan Seera

    (Monash University Malaysia)

  • Chee Peng Lim

    (Deakin University)

  • Ajay Kumar

    (EMLYON Business School)

  • Lalitha Dhamotharan

    (University of Exeter)

  • Kim Hua Tan

    (Nottingham University Business School)

Abstract

Payment cards offer a simple and convenient method for making purchases. Owing to the increase in the usage of payment cards, especially in online purchases, fraud cases are on the rise. The rise creates financial risk and uncertainty, as in the commercial sector, it incurs billions of losses each year. However, real transaction records that can facilitate the development of effective predictive models for fraud detection are difficult to obtain, mainly because of issues related to confidentially of customer information. In this paper, we apply a total of 13 statistical and machine learning models for payment card fraud detection using both publicly available and real transaction records. The results from both original features and aggregated features are analyzed and compared. A statistical hypothesis test is conducted to evaluate whether the aggregated features identified by a genetic algorithm can offer a better discriminative power, as compared with the original features, in fraud detection. The outcomes positively ascertain the effectiveness of using aggregated features for undertaking real-world payment card fraud detection problems.

Suggested Citation

  • Manjeevan Seera & Chee Peng Lim & Ajay Kumar & Lalitha Dhamotharan & Kim Hua Tan, 2024. "An intelligent payment card fraud detection system," Annals of Operations Research, Springer, vol. 334(1), pages 445-467, March.
  • Handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-021-04149-2
    DOI: 10.1007/s10479-021-04149-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04149-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04149-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fredj Jawadi & Wael Louhichi & Abdoulkarim Idi Cheffou & Hachmi Ben Ameur, 2019. "Modeling time-varying beta in a sustainable stock market with a three-regime threshold GARCH model," Annals of Operations Research, Springer, vol. 281(1), pages 275-295, October.
    2. Nikolaos Sariannidis & Stelios Papadakis & Alexandros Garefalakis & Christos Lemonakis & Tsioptsia Kyriaki-Argyro, 2020. "Default avoidance on credit card portfolios using accounting, demographical and exploratory factors: decision making based on machine learning (ML) techniques," Annals of Operations Research, Springer, vol. 294(1), pages 715-739, November.
    3. Ben Ameur, H. & Prigent, J.-L., 2018. "Risk management of time varying floors for dynamic portfolio insurance," European Journal of Operational Research, Elsevier, vol. 269(1), pages 363-381.
    4. Pavía, Jose M. & Veres-Ferrer, Ernesto J. & Foix-Escura, Gabriel, 2012. "Credit card incidents and control systems," International Journal of Information Management, Elsevier, vol. 32(6), pages 501-503.
    5. Hachmi Ben Ameur & Fredj Jawadi & Abdoulkarim Idi Cheffou & Wael Louhichi, 2018. "Measurement errors in stock markets," Annals of Operations Research, Springer, vol. 262(2), pages 287-306, March.
    6. repec:hal:journl:hal-02455189 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fredj Jawadi & Nabila Jawadi & Abdoulkarim Idi Cheffou, 2024. "Testing the animal spirits theory for ethical investments: further evidence from aggregated and disaggregated data," Annals of Operations Research, Springer, vol. 333(1), pages 461-479, February.
    2. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    3. Charles-Olivier Amédée-Manesme & Fabrice Barthélémy, 2022. "Proper use of the modified Sharpe ratios in performance measurement: rearranging the Cornish Fisher expansion," Annals of Operations Research, Springer, vol. 313(2), pages 691-712, June.
    4. Mohammad Mahbobi & Salman Kimiagari & Marriappan Vasudevan, 2023. "Credit risk classification: an integrated predictive accuracy algorithm using artificial and deep neural networks," Annals of Operations Research, Springer, vol. 330(1), pages 609-637, November.
    5. Zhou, Ying & Shen, Long & Ballester, Laura, 2023. "A two-stage credit scoring model based on random forest: Evidence from Chinese small firms," International Review of Financial Analysis, Elsevier, vol. 89(C).
    6. Dupret, Jean-Loup & Hainaut, Donatien, 2021. "Portfolio insurance under rough volatility and Volterra processes," LIDAM Discussion Papers ISBA 2021026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Killian Pluzanski & Jean-Luc Prigent, 2023. "Risk management of margin based portfolio strategies for dynamic portfolio insurance with minimum market exposure," THEMA Working Papers 2023-22, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    8. Dawen Yan & Xiaohui Zhang & Mingzheng Wang, 2021. "A robust bank asset allocation model integrating credit-rating migration risk and capital adequacy ratio regulations," Annals of Operations Research, Springer, vol. 299(1), pages 659-710, April.
    9. Apostolos G. Katsafados & Dimitris Anastasiou, 2024. "Short-term prediction of bank deposit flows: do textual features matter?," Annals of Operations Research, Springer, vol. 338(2), pages 947-972, July.
    10. Chen, Yu & Lin, Boqiang, 2022. "Quantifying the extreme spillovers on worldwide ESG leaders' equity," International Review of Financial Analysis, Elsevier, vol. 84(C).
    11. M. Karanasos & S. Yfanti & J. Hunter, 2022. "Emerging stock market volatility and economic fundamentals: the importance of US uncertainty spillovers, financial and health crises," Annals of Operations Research, Springer, vol. 313(2), pages 1077-1116, June.
    12. Peyman Alipour & Ali Foroush Bastani, 2023. "Value-at-Risk-Based Portfolio Insurance: Performance Evaluation and Benchmarking Against CPPI in a Markov-Modulated Regime-Switching Market," Papers 2305.12539, arXiv.org.
    13. Liukai Wang & Fu Jia & Lujie Chen & Qifa Xu, 2023. "Forecasting SMEs’ credit risk in supply chain finance with a sampling strategy based on machine learning techniques," Annals of Operations Research, Springer, vol. 331(1), pages 1-33, December.
    14. Fredj Jawadi, 2016. "What Have We Learned from the 2007-08 Financial Crisis? Papers Presented at the Second International Workshop on Financial Markets and Nonlinear Dynamics (Paris, June 4-5, 2015)," Open Economies Review, Springer, vol. 27(5), pages 819-823, November.
    15. Bhattacherjee, Purba & Mishra, Sibanjan & Bouri, Elie, 2024. "Does asset-based uncertainty drive asymmetric return connectedness across regional ESG markets?," Global Finance Journal, Elsevier, vol. 61(C).
    16. Chinnadurai Kathiravan & Murugesan Selvam & Sankaran Venkateswar & S. Balakrishnan, 2021. "Investor behavior and weather factors: evidences from Asian region," Annals of Operations Research, Springer, vol. 299(1), pages 349-373, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:334:y:2024:i:1:d:10.1007_s10479-021-04149-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.