IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v273y2019i1d10.1007_s10479-017-2531-2.html
   My bibliography  Save this article

Fresh seafood delivery routing problem using an improved ant colony optimization

Author

Listed:
  • Baozhen Yao

    (Dalian University of Technology)

  • Chao Chen

    (Dalian University of Technology)

  • Xiaolin Song

    (Dalian Maritime University)

  • Xiaoli Yang

    (Dalian Maritime University)

Abstract

Energy cost for keeping fresh seafood in cold condition is a main feature of a fresh seafood delivery routing problem. In the delivery routing problem, energy cost varies during the transportation process and the service process. In addition, there are many fresh seafood product factories whose seafood products should be delivered to a set of customers. Therefore, this paper models the fresh seafood delivery problem as a multi-depot vehicle routing problem, which aims to find the routes with the least cost. Due to the complexity of the problem, a method is used to reduce the complexity by changing the multi-depot vehicle routing problem into a vehicle routing problem with a dummy depot in this paper. Then, ant colony optimization (ACO) is used to solve this problem. Scanning strategy and crossover operation are also adopted to improve the performance of ACO. At last, the computational results of the benchmark problems of the multi-depot vehicle routing problem indicate the effectiveness of the algorithm. Furthermore, the real-life fresh seafood delivery routing problem from Dalian city suggests the proposed model is feasible.

Suggested Citation

  • Baozhen Yao & Chao Chen & Xiaolin Song & Xiaoli Yang, 2019. "Fresh seafood delivery routing problem using an improved ant colony optimization," Annals of Operations Research, Springer, vol. 273(1), pages 163-186, February.
  • Handle: RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-017-2531-2
    DOI: 10.1007/s10479-017-2531-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-017-2531-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-017-2531-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    2. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "Implicit depot assignments and rotations in vehicle routing heuristics," European Journal of Operational Research, Elsevier, vol. 237(1), pages 15-28.
    3. Albritton, M. David & McMullen, Patrick R., 2007. "Optimal product design using a colony of virtual ants," European Journal of Operational Research, Elsevier, vol. 176(1), pages 498-520, January.
    4. B. Bullnheimer & R.F. Hartl & C. Strauss, 1999. "An improved Ant System algorithm for theVehicle Routing Problem," Annals of Operations Research, Springer, vol. 89(0), pages 319-328, January.
    5. B Yu & Z-Z Yang & J-X Xie, 2011. "A parallel improved ant colony optimization for multi-depot vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 183-188, January.
    6. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    7. Gillett, Billy E & Johnson, Jerry G, 1976. "Multi-terminal vehicle-dispatch algorithm," Omega, Elsevier, vol. 4(6), pages 711-718.
    8. Angelelli, Enrico & Grazia Speranza, Maria, 2002. "The periodic vehicle routing problem with intermediate facilities," European Journal of Operational Research, Elsevier, vol. 137(2), pages 233-247, March.
    9. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    10. Yu, Bin & Yang, Zhong-Zhen & Yao, Baozhen, 2009. "An improved ant colony optimization for vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 196(1), pages 171-176, July.
    11. Yu, Bin & Yang, Zhong Zhen, 2011. "An ant colony optimization model: The period vehicle routing problem with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 166-181, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Zhe & Song, Xiaoling & Gong, Xue & Yin, Yong & Lev, Benjamin & Zhou, Xiaoyang, 2024. "Coordinated seru scheduling and distribution operation problems with DeJong’s learning effects," European Journal of Operational Research, Elsevier, vol. 313(2), pages 452-464.
    2. Yu, Bin & Shan, Wenxuan & Sheu, Jiuh-Biing & Diabat, Ali, 2022. "Branch-and-price for a combined order selection and distribution problem in online community group-buying of perishable products," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 341-373.
    3. Wang, Wenyuan & Liu, Huakun & Tian, Qi & Xia, Zicheng & Liu, Suri & Peng, Yun, 2024. "An enhanced variable neighborhood search method for refrigerated container stacking and relocation problem with duplicate priorities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    4. Wan Fang & Guo Haixiang & Li Jinling & Gu Mingyun & Pan Wenwen, 2021. "Multi-objective Emergency Scheduling for Geological Disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1323-1358, January.
    5. He Huang & Hongcheng Gan & Shangqing Li & Yanfeng Zhong, 2024. "How to achieve sustainable distribution in the fast fashion industry? An electric vehicle solution under the “vehicle-battery separation” mode," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(4), pages 8443-8465, April.
    6. Daqing Wu & Chenxiang Wu, 2022. "Research on the Time-Dependent Split Delivery Green Vehicle Routing Problem for Fresh Agricultural Products with Multiple Time Windows," Agriculture, MDPI, vol. 12(6), pages 1-28, May.
    7. Xuhong Cai & Li Jiang & Songhu Guo & Hejiao Huang & Hongwei Du, 2022. "TLHSA and SACA: two heuristic algorithms for two variant VRP models," Journal of Combinatorial Optimization, Springer, vol. 44(4), pages 2996-3022, November.
    8. Cui, Shaohua & Yao, Baozhen & Chen, Gang & Zhu, Chao & Yu, Bin, 2020. "The multi-mode mobile charging service based on electric vehicle spatiotemporal distribution," Energy, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Themistoklis Stamadianos & Andromachi Taxidou & Magdalene Marinaki & Yannis Marinakis, 2024. "Swarm intelligence and nature inspired algorithms for solving vehicle routing problems: a survey," Operational Research, Springer, vol. 24(3), pages 1-45, September.
    2. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    3. Rahma Lahyani & Leandro C. Coelho & Jacques Renaud, 2018. "Alternative formulations and improved bounds for the multi-depot fleet size and mix vehicle routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(1), pages 125-157, January.
    4. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    5. B Yu & Z-Z Yang & J-X Xie, 2011. "A parallel improved ant colony optimization for multi-depot vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 183-188, January.
    6. Tânia Rodrigues Pereira Ramos & Maria Isabel Gomes & Ana Paula Barbosa-Póvoa, 2020. "A new matheuristic approach for the multi-depot vehicle routing problem with inter-depot routes," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(1), pages 75-110, March.
    7. Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.
    8. Zhang, Shuai & Gajpal, Yuvraj & Appadoo, S.S. & Abdulkader, M.M.S., 2018. "Electric vehicle routing problem with recharging stations for minimizing energy consumption," International Journal of Production Economics, Elsevier, vol. 203(C), pages 404-413.
    9. Jan Christiaens & Greet Vanden Berghe, 2020. "Slack Induction by String Removals for Vehicle Routing Problems," Transportation Science, INFORMS, vol. 54(2), pages 417-433, March.
    10. Schmidt, Carise E. & Silva, Arinei C.L. & Darvish, Maryam & Coelho, Leandro C., 2023. "Time-dependent fleet size and mix multi-depot vehicle routing problem," International Journal of Production Economics, Elsevier, vol. 255(C).
    11. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.
    12. Yiwei Fan & Gang Wang & Xiaoling Lu & Gaobin Wang, 2019. "Distributed forecasting and ant colony optimization for the bike-sharing rebalancing problem with unserved demands," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-26, December.
    13. Weiheng Zhang & Yuvraj Gajpal & Srimantoorao. S. Appadoo & Qi Wei, 2020. "Multi-Depot Green Vehicle Routing Problem to Minimize Carbon Emissions," Sustainability, MDPI, vol. 12(8), pages 1-19, April.
    14. Baozhen Yao & Bin Yu & Ping Hu & Junjie Gao & Mingheng Zhang, 2016. "An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot," Annals of Operations Research, Springer, vol. 242(2), pages 303-320, July.
    15. CASTRO, Marco & SÖRENSEN, Kenneth & VANSTEENWEGEN, Pieter & GOOS, Peter, 2012. "A simple GRASP+VND for the travelling salesperson problem with hotel selection," Working Papers 2012024, University of Antwerp, Faculty of Business and Economics.
    16. Li Zhu & Yeming Gong & Yishui Xu & Jun Gu, 2019. "Emergency relief routing models for injured victims considering equity and priority," Annals of Operations Research, Springer, vol. 283(1), pages 1573-1606, December.
    17. Ramos, Tânia Rodrigues Pereira & Gomes, Maria Isabel & Barbosa-Póvoa, Ana Paula, 2014. "Planning a sustainable reverse logistics system: Balancing costs with environmental and social concerns," Omega, Elsevier, vol. 48(C), pages 60-74.
    18. Jose Carlos Molina & Ignacio Eguia & Jesus Racero, 2019. "Reducing pollutant emissions in a waste collection vehicle routing problem using a variable neighborhood tabu search algorithm: a case study," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 253-287, July.
    19. Crevier, Benoit & Cordeau, Jean-Francois & Laporte, Gilbert, 2007. "The multi-depot vehicle routing problem with inter-depot routes," European Journal of Operational Research, Elsevier, vol. 176(2), pages 756-773, January.
    20. Wei Song & Shuailei Yuan & Yun Yang & Chufeng He, 2022. "A Study of Community Group Purchasing Vehicle Routing Problems Considering Service Time Windows," Sustainability, MDPI, vol. 14(12), pages 1-17, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:273:y:2019:i:1:d:10.1007_s10479-017-2531-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.