IDEAS home Printed from https://ideas.repec.org/a/spr/alstar/v108y2024i2d10.1007_s10182-024-00501-6.html
   My bibliography  Save this article

Markov-switching decision trees

Author

Listed:
  • Timo Adam

    (University of Copenhagen
    Bielefeld University)

  • Marius Ötting

    (Bielefeld University)

  • Rouven Michels

    (Bielefeld University)

Abstract

Decision trees constitute a simple yet powerful and interpretable machine learning tool. While tree-based methods are designed only for cross-sectional data, we propose an approach that combines decision trees with time series modeling and thereby bridges the gap between machine learning and statistics. In particular, we combine decision trees with hidden Markov models where, for any time point, an underlying (hidden) Markov chain selects the tree that generates the corresponding observation. We propose an estimation approach that is based on the expectation-maximisation algorithm and assess its feasibility in simulation experiments. In our real-data application, we use eight seasons of National Football League (NFL) data to predict play calls conditional on covariates, such as the current quarter and the score, where the model’s states can be linked to the teams’ strategies. R code that implements the proposed method is available on GitHub.

Suggested Citation

  • Timo Adam & Marius Ötting & Rouven Michels, 2024. "Markov-switching decision trees," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(2), pages 461-476, June.
  • Handle: RePEc:spr:alstar:v:108:y:2024:i:2:d:10.1007_s10182-024-00501-6
    DOI: 10.1007/s10182-024-00501-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10182-024-00501-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10182-024-00501-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:plo:pone00:0235750 is not listed on IDEAS
    2. Vianey Leos-Barajas & Eric J. Gangloff & Timo Adam & Roland Langrock & Floris M. Beest & Jacob Nabe-Nielsen & Juan M. Morales, 2017. "Multi-scale Modeling of Animal Movement and General Behavior Data Using Hidden Markov Models with Hierarchical Structures," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 232-248, September.
    3. Robert E. McCulloch & Ruey S. Tsay, 1994. "Statistical Analysis Of Economic Time Series Via Markov Switching Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 15(5), pages 523-539, September.
    4. Heiny Erik L & Blevins David, 2011. "Predicting the Atlanta Falcons Play-Calling Using Discriminant Analysis," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-14, July.
    5. Adam, Timo & Mayr, Andreas & Kneib, Thomas, 2022. "Gradient boosting in Markov-switching generalized additive models for location, scale, and shape," Econometrics and Statistics, Elsevier, vol. 22(C), pages 3-16.
    6. Goodwin, Thomas H, 1993. "Business-Cycle Analysis with a Markov-Switching Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 331-339, July.
    7. Marco Sandri & Paola Zuccolotto & Marica Manisera, 2020. "Markov switching modelling of shooting performance variability and teammate interactions in basketball," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(5), pages 1337-1356, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Säfken & David Rügamer, 2024. "Editorial special issue: Bridging the gap between AI and Statistics," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 108(2), pages 225-229, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Penelope A. Smith & Peter M. Summers, 2005. "How well do Markov switching models describe actual business cycles? The case of synchronization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(2), pages 253-274.
    2. Paap, Richard & van Dijk, Herman K, 2003. "Bayes Estimates of Markov Trends in Possibly Cointegrated Series: An Application to U.S. Consumption and Income," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(4), pages 547-563, October.
    3. Franses, Philip Hans & Paap, Richard, 1999. "Does Seasonality Influence the Dating of Business Cycle Turning Points?," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 79-92, January.
    4. Penelope A. Smith & Peter M. Summers, 2004. "Identification and normalization in Markov switching models of \"business cycles\"," Research Working Paper RWP 04-09, Federal Reserve Bank of Kansas City.
    5. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    6. Gabriel Calvo & Carmen Armero & Luigi Spezia, 2025. "Can the hot hand phenomenon be modelled? A Bayesian hidden Markov approach," Computational Statistics, Springer, vol. 40(4), pages 2195-2222, April.
    7. Chan, Joshua C.C. & Santi, Caterina, 2021. "Speculative bubbles in present-value models: A Bayesian Markov-switching state space approach," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    8. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    9. Getmansky, Mila & Lo, Andrew W. & Makarov, Igor, 2004. "An econometric model of serial correlation and illiquidity in hedge fund returns," Journal of Financial Economics, Elsevier, vol. 74(3), pages 529-609, December.
    10. Sylvia Frühwirth‐Schnatter & Sylvia Kaufmann, 2006. "How do changes in monetary policy affect bank lending? An analysis of Austrian bank data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(3), pages 275-305, April.
    11. Terence C. Mills & Ping Wang, 2003. "Have output growth rates stabilised? evidence from the g‐7 economies," Scottish Journal of Political Economy, Scottish Economic Society, vol. 50(3), pages 232-246, August.
    12. Cohen, Daniel & Villemot, Sébastien, 2012. "The Sovereign Default Puzzle: Modelling Issues and Lessons for Europe," CEPR Discussion Papers 8971, C.E.P.R. Discussion Papers.
    13. Karamé, Frédéric, 2015. "Asymmetries and Markov-switching structural VAR," Journal of Economic Dynamics and Control, Elsevier, vol. 53(C), pages 85-102.
    14. Mike Artis & Hans-Martin Krolzig & Juan Toro, 2004. "The European business cycle," Oxford Economic Papers, Oxford University Press, vol. 56(1), pages 1-44, January.
    15. Moolman, Elna, 2004. "A Markov switching regime model of the South African business cycle," Economic Modelling, Elsevier, vol. 21(4), pages 631-646, July.
    16. Manuel Paquette-Dupuis & Dalibor Stevanovic & Rachidi Kotchoni, 2019. "Prévisions de l’activité économique en temps de crise," CIRANO Project Reports 2019rp-04, CIRANO.
    17. Nan Li & Simon S. Kwok, 2021. "Jointly determining the state dimension and lag order for Markov‐switching vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 471-491, July.
    18. Sandip Chakraborty & Ram Kumar Kakani & Bernadette C. Canasa, 2017. "Impact of International Outsourcing on Domestic Wage of Singapore Manufacturing Sector," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 9(6), pages 82-97, June.
    19. Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
    20. Psaradakis, Zacharias & Sola, Martin, 1998. "Finite-sample properties of the maximum likelihood estimator in autoregressive models with Markov switching," Journal of Econometrics, Elsevier, vol. 86(2), pages 369-386, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:alstar:v:108:y:2024:i:2:d:10.1007_s10182-024-00501-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.