IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v7y2011i3n2.html
   My bibliography  Save this article

Predicting the Atlanta Falcons Play-Calling Using Discriminant Analysis

Author

Listed:
  • Heiny Erik L

    (Utah Valley University)

  • Blevins David

    (Gaston Community College)

Abstract

This study investigated the ability of discriminant analysis to predict the offensive play calling of the 2005 Atlanta Falcons. Data was collected on each of the 988 offensive plays run from scrimmage by the Atlanta Falcons during the 2005 NFL season. Independent variables included game location (home vs. away), down, yards to go, field position, score, offensive formation, opponents defensive rank against both the run and the pass, weather and field surface (turf vs. grass). The response variable was categorized into either a short pass (5 yards or less), medium pass (6 to 15 yards), long pass (more than 15 yards), run, or scramble (by Michael Vick).A linear discriminant function was developed to predict play calling based on the independent variables. Based on a cross validation procedure, the model was able to correctly predict the play called 40.38 percent of the time. While this rate is not high, the model was able to predict each play with greater accuracy than the relative frequency that each play was run. Considering that the Falcons coaches said they only use frequencies, the use of discriminant analysis is an intriguing possibility for NFL coaches.

Suggested Citation

  • Heiny Erik L & Blevins David, 2011. "Predicting the Atlanta Falcons Play-Calling Using Discriminant Analysis," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(3), pages 1-14, July.
  • Handle: RePEc:bpj:jqsprt:v:7:y:2011:i:3:n:2
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/jqas.2011.7.3/jqas.2011.7.3.1230/jqas.2011.7.3.1230.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alamar Benjamin C, 2010. "Measuring Risk in NFL Playcalling," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-9, April.
    2. Alamar Benjamin C, 2006. "The Passing Premium Puzzle," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(4), pages 1-10, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:7:y:2011:i:3:n:2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.